

Summary Report

Summary Report

Summary Report
Code Review of the NOvA Run Control Software
May 22, 2014

Table of Contents
Executive Summary	3
1.0	Introduction	4
2.0	NOvA Run Control	5
3.0	Charge Questions	9
3.1	Code Review Charge Question(s)	9

[bookmark: _Toc240441120][bookmark: _Toc242514136][bookmark: _Toc242518870][bookmark: _Toc262980927]
Executive Summary

[bookmark: _Toc240441121][bookmark: _Toc242514137][bookmark: _Toc242518871][bookmark: _Toc262980928]
Introduction
The NOvA Run Control application is being successfully used to control data taking in all of the necessary detector environments (Far Detector, NDOS, Near Detector, and teststands). However, there are several problems that surface occasionally and have been difficult to resolve. Peter Shanahan and Jon Paley requested that members of the SSA quadrant review the Run Control code to look for issues that may be contributing to the nagging problems.
The charge from Peter was the following:
The NovaRunControl package exhibits some of the more persistent
problems in the NOvA DAQ Software suite. Crashes of the rcServer
program have resisted multiple fixes that initially appeared promising.
The purpose of this review is principally to examine the NovaRunControl code
for characteristics that may be responsible for these crashes and the
difficulty in eliminating them despite more than an FTE-month of effort spent
trying to do so. Feedback on other coding issues would also be welcome.
The specific issues that were identified before the review were the following:
1. The Run Control server crashes at random times during data taking at FarDet. (There is a theory that the times are not random, but are related to the switching from one subrun to another.)
2. [bookmark: _GoBack]The Run Control server crashes at various points in the lifecycle of the DAQ. This happens more often after an initial run has been started and ended, and the system is being reconfigured and/or a subsequent run started.
3. At various times in the lifecycle of Run Control, the communication between the GUI and the server appears to hang. Typing a command (or gibberish) in the ExecuteCommand box in the GUI and submitting that command restores the communication between the two. This happens at PrepareConfiguration, LoadConnectionConfiguration, MakeConnections, ConfigureRun, etc. transitions.
4. When running from the novadaq account on novatest01, if there is a stale partition defined in the Resource Manager, removing that stale partition from the ResMgr causes the Run Control server to crash or exit.
An Issue was created in the Fermilab Redmine instance for tracking this code review, #6196 (https://cdcvs.fnal.gov/redmine/issues/6196).
The members of the review committee were Kurt Biery, Marc Paterno, and John Freeman. The review was conducted from 08:30 until 17:00 on 22-May-2014.
[bookmark: _Toc262980929]
NOvA Run Control

Findings
It appears that the RCServer class destructor is not being called when the rcServer.cc main function exits. This could be because the QCoreApplication::exec() function never returns. This may be a largely cosmetic issue since the application is exiting at that point in time, but this behavior could affect the saving of the Run Control configuration information via the RCServer::SaveRCConfig() method. (It looks like the SaveRCConfig() method is called whenever a change is made to the configuration data, and we wondered whether that functionality was added when there were problems getting the configuration to be saved at destruction time.)
A single recursive mutex is used in the RCServer class to restrict access to a wide range of critical data and/or behavior to a single thread at a time. It wasn’t clear if the recursive mutex is necessary, or whether one or more non-recursive mutexes, along with a suitable design of the public and private methods in this class, would provide the necessary functionality in a more robust way.
Some of the methods in the RCServer class include thread locking and don’t appear to need such locking (e.g. sendStateChange()). Others do not include such locking and appear to need it (e.g. processMessage(<StatusResponse>)).
It wasn’t clear which data members in the RCServer class need to be handled in a thread-safe way. For example, _monRMSResponseTime is accessed in multiple methods, but there is no protection against multiple threads modifying this std::map at the same time.
The RCServer::GetCurrentState() method has several items of note:
An “end” iterator for an array is fetched and decremented. We do not believe that the decrementing of “end” iterators is guaranteed to have well-defined behavior.
The “try” block does not appear to contain any calls that can generate an exception, so we were not sure why exception handling was needed.
Our sense was that there are more robust ways to achieve the desired behavior than calling GetCurrentState() recursively.
Many of the state machine transition methods have tests that the server is in the correct state. This was a little surprising since we expected the state machine to handle details such as that. Maybe these tests are simply for diagnostic purposes. In that case, we would expect all such methods to have the ability to report that they were called inappropriately. Some of these methods do have such ability while others do not.
The WriteToECL() and WriteToSubrunsDB() methods in the RCServer class make use of the Qt thread class (QThread) whereas the RMS library makes use of Boost threads. In addition to these threads, the Qt event loop runs in a dedicated thread.
The RCServer::MakeTransition() method writes out information to a file on disk, and it does not prevent multiple threads from doing so at the same time, from what we could tell. The information that is written seems to be diagnostic in nature, so this probably does not present much danger to the robustness of the application.
A custom communications protocol is used between the RC server and GUI (client), and between the RC server and the ResourceManager server. We noticed several issues with the code that receives and interprets these messages. (Similar routines to process incoming messages exist in three places.)
There is a possible race condition between when the number of bytes available is determined and the bytes are read from the socket.
Multiple messages can be incorrectly interpreted as a single message.
Several items were noted in the RCServer::ExecuteCmd() method:
This method assumes that the input vector of strings always has at least one string. Possibly this is a safe assumption, given how this method is used.
This is a rather large method (~700 lines), and it wasn’t clear whether it should include thread locking to prevent concurrent calls from modifying data members or executing critical sections of code.
It wasn’t clear if the handling of errors in this method was robust. For example, there was the sense that an invalid command could be received, but the method would still return a “success” status code.
The method includes code to write a file with a history of the commands that are received, but we could not find the history file on disk. We believe that there is a problem with writing the history file, and we suspect that the file is never successfully opened. This could be related to the use of a tilde in the path of the file.
In the RCServer::GetCurrentState() method, the practice of using the last QAbstractState in the QSet that is returned from the state machine configuration() method did not seem to be guaranteed to return the most nested state (given our reading of the Qt documentation).
The reported lack of a useful core file when crashes occur in production was a concern, but we didn’t have the time to examine the signal handling code in the RC application and the libraries that are used (e.g. RMS). One suspicion was that the signal handling that is being used is changing the typical crash behavior.
There is not much use of the “const” qualifier for data or methods in the RCServer class.
The RCServer class is very large and would benefit from being split into functional components that would be easier to understand, debug, and test independently. RCServer.cpp has ~7000 lines. The RCServer class over 200 public methods, of which ~130 are Qt slots.
Comments
We did not find clear evidence for the cause(s) of the first three reported problems. We did find a number of code sections that contained problematic code. In most (or all) cases, our analysis concluded that the problematic code would not cause program errors or crashes during normal operation. However, we would recommend that the suggested improvements be made in order to increase the robustness of the Run Control server. And, it is certainly possible that one or more of the recommendations would fix the observed problems.
In order to gain some operational experience with RunControl, we used a test system on the NOvA DAQ teststand (novatest01) to run a couple of limited tests.
We were able to successfully debug the fourth reported problem. This turned out to be an array-out-of-bounds error in RCStateMachine::LastTransition(). When this method was called and the internal “history” array was empty, the code was trying to look up index “-1”. This code has been modified to protect against this error, and the change has been committed to CVS.
As part of our testing on novatest01, we attempted to use the valgrind/helgrind tool to look for thread race conditions. However, the large number of problems that this tool reported for library code that did not appear to truly have a problem overwhelmed any substantive problem reports that may have been found.
In the absence of finding clear sources for problems by inspecting the code, our expectation is that the problems will need to be found by instrumenting the code and running tests to reproduce the problems. We understand that Jon has done a considerable amount of work in this area already. If time permits, maybe we could help in this area. Also, it is possible that the use of the TotalView debugger could be helpful.
Recommendations
In an attempt to reduce the number of crashes seen in production, we recommend that thread locking be added to the RMS/DDS callback methods in the RCServer class (e.g. processMessage(<BeginRunResponse>)) using the existing single RecursiveMutex that is part of this class. This is a short-term fix, and better solutions that will take longer to implement are included below.
We recommend that the RCServer class be split up into a set of related classes, each of which contains a manageable and well-defined set of functionality that can easily be understood, tested, and debugged. Some suggestions include the following:
1.1 Move as many data members of the RCServer class as possible into container classes that group related data members together and provide appropriate thread-safe access to the data members that require it.
1.2 Create dedicated classes, each of which handles a single type of function, such as state machine transitions, communication with external processes, execution of user commands, and RMS/DDS callbacks. Each dedicated class should provide the appropriate level of locking for its data and behavior to ensure thread-safe operation.
1.3 Once the RCServer class has been refactored, if there still remains a need to lock data or behavior to ensure thread safety, rework the code to use simply standard mutexes rather than recursive ones. We suggest using a pattern of including a sufficient amount of locking in public interface methods, and trusting that the appropriate amount of locking is already done in private worker methods.
We recommend that the code that sends and receives messages between the RCServer and the RCGUI, and the RCServer and the RMServer, be reworked to make it more robust. Ideally, the rewored code would be structured so that as many components as possible can be tested with a unit test suite (and such unit tests would be created). Possibly, this code could be implemented in a single class that is used by all the relevant applications. Possibly investigate the use of an existing third-party protocol that is commonly used and has been thoroughly debugged.
We recommend that someone investigate why the RCServer destructor is not being called and remedy that situation.
We recommend that someone investigate why the history file is not being populated and remedy that situation.
We recommend that the appropriate level of const-correctness be added to the refactored code.
[bookmark: _Toc242514146][bookmark: _Toc242518880]

[bookmark: _Toc142367897][bookmark: _Toc240441128][bookmark: _Toc242514169][bookmark: _Toc242518903][bookmark: _Toc262980930]Charge Questions
[bookmark: _Toc262980931]Code Review Charge Question(s)
1.1.1 The purpose of this review is principally to examine the NovaRunControl code for characteristics that may be responsible for the crashes that are observed and the difficulty in eliminating them.

As mentioned previously, we did not find clear indications of why the reported errors are happening. However, we found several areas that could be contributing to the errors. We’ve provided recommendations on ways to improve the code, and we believe that these improvements will result in a more robust, and easier to debug, application.

Code Review of the NOvA Run Control Software
May 22, 2014
Page 4 of 10
Code Review of the NOvA Run Control Software
May 22, 2014
Page 9 of 10
image1.wmf
Fermilab

