
IFBeam	
 Database	

Architecture	
 and	
 Functionality	

Igor Mandrichenko
(draft)

5/21/2014

Overview	

IFBeam Database (IFBeamDB) is a software system designed and
developed by SCD in 2011-2012. Its primary goal is to record,
preserve and make available beam conditions data for the intensity
frontier experiments at FNAL. It is designed as a single common
source of beam conditions data for multiple experiments.

IFBeamDB system is designed and built to meet very strict
requirements for data collection and availability, minimizing possibility
of any data loss. This is achieved by using 2 design principles:

• Component redundancy – many components of the system are
duplicated and run in multiple instances in parallel to make sure
the system continues functioning even if one of redundant
components fails;

• Data buffering – collected data is buffered on disk between data
transfers so that if the target network node is currently
unavailable, the data is not lost and will be transferred later.

Using these two principles, we were able to design a system, which
has no single component, failure of which can cause any data loss.
However, certain components remain critical in the sense that their
failure may cause delay of the data delivery to the end user.

Data	
 Collection	

IFBeamDB uses ACNet as the source of the beam conditions
information. Data is received in real time from ACNet by a redundant
set of data collectors from redundant set of ACNet data brokers over
ACNet proprietary protocol, implemented by AD-provided Java based
client API. Currently we have 3 redundant data collectors running on
one physical computer (dbweb3) and 2 virtual GPCF machines
(ifbcollectorgpvm01 and ifbcollectorgpvm01). Each collector is

receiving data from individual ACNet broker process, each running on
individual AD computer. If necessary, more collectors can be added to
the system. This will further increase system reliability, but will also
increase load on certain components of the system. Currently, we
believe 3 collectors are enough for the system to meet its
requirements.

Each collector produces data in 3 ways:

• Data is stored in real time database as soon as it is received by
the collector. In cases when the real-time database is
temporarily not capable of receiving the data, the collector gives
up and drops the piece of data which can not be delivered
immediately;

• Collector sends UDP message to 2 redundant Event Monitor
(emon) processes. These messages contain only event
timestamps for each beam line event the collector is notified
about. No actual data is sent. Emon processes run on dbweb3
and dbweb4 computers.

• All measurements are written in a text file in local disk buffer.
The collector closes each file after it receives certain number of
events or after some timeout. Once the file is closed, it is copied

to “central” data collection computer (dbweb3). If the file can
not be copied, it remains in the collector’s disk buffer and the
system keeps retrying the data transfer until it succeeds.

Primary purpose of the collector is to make sure all the beams data is
received and eventually stored in the text files and then shipped to the
“central” node, even if it can not be done immediately. That the real-
time data and the timestamps delivery is not guaranteed by an
individual collector. However, in practice, due to the redundancy, there
is practically no data loss in the real-time database.

Data	
 Storage	

IFBeamDB data is stored in 2 independent databases:

Real-­‐time	
 database	

This is relatively small and high turn-over database. This database is
used for online monitoring of beam conditions. Although each
individual data collector can not guarantee reliable delivery of all data
into the real-time database, the collector redundancy lowers real-time
data loss to zero for all practical purposes.

Each collector sends data to this database immediately and directly.
Because we have redundant collectors, normally, all data in the real-
time database is duplicated multiple times (as many times as many
collectors there are in the system). In order to deliver data quickly,
data redundancy is not removed. This database keeps data for only 1
hour. Old data is being purged every 15 minutes by a cron job.

Typical data delivery latency for real-time database is ~1 second.

Off-­‐line	
 database
This is large (currently ~1TB) database, where the data is stored
either permanently or for 1 month, depending on the device. This
database is used by off-line data processing. Therefore, for this
database, data delivery reliability is more important than low latency.
Off-line data is delivered from redundant collectors via several disk
buffers and filtered to remove any data redundancy by the merger
process running on dbweb3.

Typical data delivery latency for off-line database is several minutes,
but can reach up to one day.

Data	
 preservation	

Long-term data preservation of the off-line database is a critical
requirement of the system. To achieve this, each piece of data in the
off-line database is copied at least 6 times on different computers and
disks:

• On the database server, data is stored on a mirrored disk (2
copies)

• Databases (both off-line and real-time) are replicated between 2
computers (x2 copies, We are in the middle of implementing 3-
way replication, which will increase that to x3).

• Database is backed up into BluArk 2 times a week and 2 backup
sets are kept there (+2 copies)

Data	
 Distribution	

Primary and currently the only method of data delivery provided by
the system is HTTP/REST with data sent in CSV, XML or JSON format.
The REST API is documented and can be used by any client.

The system includes several redundant data web servers running on
real servers dbweb3, dbweb4, ifbcollectorgpvm03 and
ifbcollectorgpvm04. Each data server connects to both offline and real-

time databases. Most data comes from offline database, but when the
client asks for recent data, the data server queries real time database
too.

Also, each emon instance is available as a web server and delivers
latest event timestamps information.

Data web server redundancy is supported by the Multiplexing Data
Proxy. The proxy provides single URL, which consolidates multiple
redundant data servers into single address. The proxy multiplexes
requests among the data servers using round-robin discipline with
probing each server before the request. When a client initiates the
data request, the proxy finds next available data server by probing
them one by one and forwards the data request to the server and the
received data to the client. Data proxy runs on GPCF virtual machine
dbdata0 with DNS alias ifb-data.

Another component of the system is HTTP cache. It is used to cache
results of repeating queries. Currently, it is used to cache NuMI Beam
Line Monitor (NuMIMon) charts and data displayed by IFBeamDB
dashboard. Cache runs on the same machine dbdata0 with ifb-data
alias.

Applications	

NuMIMon	

NuMI Beam Line Monitoring tool (NuMIMon) is one of applications built
around IFBeamDB. It if used in the IF control room to monitor beam
conditions during data taking. It displays current status of the NuMI
beam line as a set of constantly updating plots, produced based on the
information coming from the real-time database. It uses emon to
receive latest A9 event timestamp and then queries the database for
the beam conditions for that event and produces plots based on that
information. Plots, as png files, are cached by the data cache so that
multiple browsers asking for the same plots, share them instead of
having the server produce the same plots again.

VMon	

Variable Monitor (VMon) is used in the control room to monitor status
of individual beam devices. The user can choose devices to monitor
and set thresholds for alarms. The application periodically polls the
real-time database for latest values of the device measurements and
compares them to the set thresholds and alarms the user when the
value goes out of range. Also, the application can draw a chart of the
device measurement value over time. The application uses data
received from the real-time database via the data proxy and the data
servers.

