
	           SELVA 
	                                                                  J. Nogiec, February 10, 2012



SELVA Software Development Tasks
Initial list as of February 2012
Software Tasks

1) Set up a repository for Selva and its initial structure (Jerzy)

2) Motion control (Andrzej)
a) A module to control a single motor
b) Use the developed module as a template for all boom, mandrel and bridge motors.

3) CAN communication (Jerzy)
a) A module to send/receive data over CAN
b) CAN traffic filter and a module to  generateto generate events from a stream of incoming CAN data
c) A VIvi to send text messages to the console

4) Utilities (Jerzy)
a) Event log utility
b) An error reporting utility
c) Property access utility

5) Tension control (Roger)
a) A module to control tension

6) Reel position control (Roger)
a) A module to control reel position

7) Executive server (Jerzy)
a) Externally driven state machine generating state and actions
b) Permissives (prerequisites for actions)
c) Motor state status (running, not running)
d) Update the status info on the console

8) Host-target communication server (Jerzy)
a) Event  log streaming
b) State streaming
c) Host command service

9) Device integration (Sergey)
a) Motor synchronization
b) Integration of all the motions, air blowing and klaxon
c) Send events to the executive (motor stopped, error)

10) A client program to monitor and control machine from the host (Jerzy)
a) Implement sending commands to the target
b) Receiving, displaying and logging events
c) Receiving and displaying the system and motor state

11) State monitor server (Sergey)
a) Periodically gather state information from all components (motors, interlocks, keys, etc.)
b) Periodically send the complete state cluster to the host-target comm. server
c) Update the console screen info using the existing VI (mandrel and tension info)
d) Output the system info to the large display

12) Interlocks (Dileep)
a) Specify interlocks
b) Implement interlock state readout, interlock reset VIs and required interlock logic (FPGA)
c) Implement the interlock server, which monitors interlock, communicates events to the executive and allows the state monitor server to periodically gather the interlock state.

13) Documentation (Dileep)
a) Document software interlocks and prerequisites for executing operations.
b) Document the deployment procedure for building a standalone cRIO system. 

14) Large display (Dileep)
a) Develop a VI to output text to the display

15) Miscellaneous
a) Traffic lights support (TBD)
b) Power-on, power-off, including checking the hardware (Andrzej)
c) Keys position monitoring (TBD)
d) Heartbeat in FPGA (Andrzej)
e) Traffic lights control VI (TBD)

General Development Guidelines

1. We should try to use properties to keep configuration constants, such as PID parameters, zero position values for encoders, scaling factors, etc. It will allow the user to upload a configuration file to cRIO and modify these settings without changing our software. Use Utilities/Property.vi to get property values. For now, store your property values inside PropertyDefaults.vi. 
2. We should use the standard error reporting that I provided in the utilities. All our errors have to have assigned unique error code values. This will allow us, if needed, to make decisions inside the executive on the allowed actions after the error, recovery actions, and states. In order to report errors use GenerateError.vi to generate an error and pass it to ReportError.vi, which can also optionally log this error. We can also extend ReportError.vi to send an error event to the executive. ErrorList.ctl contains a list of errors, which you can expand by adding new errors pertaining to your modules. ReportErrorTest.vi shows how to use these VIs.
3. 
4. [bookmark: _GoBack]Any significant situation/event can and should be logged. Log.vi can be used to log debug, info, warning and error events.
5. 
	Fermi National Accelerator Laboratory | SELVA Software Development Tasks
	2



