
Requirements for Software Product
Building and Management
Lynn Garren, Chris Green, Jim Kowalkowski, Marc Paterno

SSD Group/Scientific Computing Division/Fermilab
Revision 2.0

Contents

1 Introduction 4
1.1 Purpose . 4
1.2 Overview . 4
1.3 Scope . 5
1.4 Terminology . 5
1.5 How to read the requirements . 6
2 Stakeholders 7
3 Roles 7
4 General requirements 8
4.1 Behavioral requirements . 8
4.1.1 Ability to override certain products from a known release 8
4.2 Constraints . 8
4.2.1 Supported operating systems . 8
4.2.2 Shell support . 8
5 Requirements for product management 9
5.1 Description . 9
5.2 Behavioral requirements . 9
5.2.1 Multiple versions . 9
5.2.2 Multiple ABI variants . 9
5.2.3 Multiple sets of optional components . 9
5.2.4 Exclusivity of active products . 10
5.2.5 Consistency of active products . 10
5.2.6 Products must be installable without system privileges 10
5.2.7 Installation must not specify a specific mount point 10
5.2.8 Management of product dependencies . 10
5.2.9 Ability to use products installed privately, simultaneously with other

products . 11
5.2.10 Reporting on active or available products 11
5.2.11 Umbrella products . 11
5.2.12 Registration of non-relocatable products 11
5.2.13 Removal of products . 11
5.2.14 Automatic platform selection . 11
5.3 Performance requirements . 11
5.3.1 Ability to install pre-built products . 11

1

mailto:artists@fnal.gov
mailto:artists@fnal.gov

2 Requirements for Software Product Building and Management (Rev. 2.0)

5.3.2 Non-duplication of already-installed products 12
5.3.3 Speed of setup . 12
5.3.4 Shell responsiveness . 12
5.4 Constraints . 12
5.4.1 Simultaneous active products . 12
6 Requirements for product development 12
6.1 Description . 12
6.2 Behavioral requirements . 13
6.2.1 Support for out-of-source builds . 13
6.2.2 Support for all standard build targets . 13
6.2.3 Support for the default build target . 13
6.2.4 Support for the test build target . 13
6.2.5 Test output must be brief and clear . 14
6.2.6 Access to full test output . 14
6.2.7 Support for the install build target . 14
6.2.8 Support for the package build target . 14
6.2.9 Support for the clean build target . 14
6.2.10 Support for the help build target . 14
6.2.11 Specification of non-system compilers . 14
6.2.12 Build verbosity . 14
6.2.13 Specification of configuration for ABI variants 15
6.2.14 Single-location specification of options for ABI variants 15
6.2.15 Ability to add new supported languages . 15
6.2.16 Ability to add new supported code generators 15
6.2.17 Configuration of particular build operations 15
6.2.18 Automatic rebuild . 15
6.2.19 Test dependencies . 15
6.2.20 External dependencies . 16
6.2.21 Ease of use of external dependencies . 16
6.2.22 External dependent products . 16
6.2.23 Specify different dependent product versions by variant 16
6.2.24 Ease of specification of targets . 16
6.2.25 Programmatic identification of library versions 16
6.2.26 Identification of unofficially-built code . 17
6.2.27 Partial builds . 17
6.2.28 Cross-compilation . 17
6.3 Performance requirements . 17
6.3.1 Parallel build capability . 17
6.3.2 Parallel test capability . 17
6.4 Constraints . 17
6.4.1 Integration with product management system 17
6.4.2 art suite support . 18
6.4.3 Language support . 18
6.4.4 Code generator support . 18
6.4.5 Product building capability . 19
6.4.6 Automatic dependency determination . 19
6.4.7 Linking dynamic libraries . 19
7 Requirements for product integration 19

Requirements for Software Product Building and Management (Rev. 2.0) 3

7.1 Description . 19
7.2 Behavioral requirements . 19
7.2.1 Build multiple products . 19
7.2.2 Build integrity . 20
7.2.3 Check for missing products . 20
7.2.4 Identify dependent products . 20
7.2.5 Check out products from SCM systems . 20
7.2.6 Add support for new SCM systems . 21
7.2.7 Dependency version management . 21
7.2.8 New product skeleton . 21
7.2.9 Multiple integration builds using single product source area 21
7.2.10 Identification of product build area . 21
7.2.11 Identification of product sources used . 21
7.2.12 One-step invocation for common tasks. 21
7.3 Performance requirements . 22
7.3.1 Parallel operation across products . 22
7.4 Constraints . 22
7.4.1 Integration with product development system 22
7.4.2 Integration with product management system 22
7.4.3 Support checkout from named SCM systems 22
7.4.4 No constraints on origin of product source 22
7.4.5 No constraints on use of product development system 22
7.4.6 No constraints on product variant selection 22
8 Requirements for build tool for release managers 23
8.1 Description . 23
8.2 Behavioral requirements . 23
8.2.1 Product build instructions must be self-contained 23
8.2.2 No constraints on product build system . 23
8.2.3 Products specify only direct dependencies 23
8.2.4 Bulk building . 23
8.2.5 Umbrella products . 23
8.2.6 Forced rebuilds . 23
8.2.7 Automatic rebuild of dependent products 24
8.2.8 Updating versions of dependent products 24
8.2.9 Multiple ABI variants . 24
8.2.10 Flexibility between ABI variants and optional component sets 25
8.2.11 Single authoritative specification of dependencies 25
8.2.12 Production of distribution manifests . 25
8.3 Performance requirements . 25
8.3.1 Partial rebuilding . 25
8.3.2 Efficient use of multi-core build machines 25
8.4 Constraints . 25
8.4.1 Build for all officially-supported platforms 25
8.4.2 Integration with product management system 26

4 Requirements for Software Product Building and Management (Rev. 2.0)

1 Introduction

1.1 Purpose

The Fermilab Scientific Computing Division’s Scientific Software Development Group has
organizational goals of developing and supporting the software infrastructure relied upon
by current and planned Intensity Frontier experiments, as well as Cosmology experiments
and projects. The group has a working set of tools for product management, product
development, integration of multiple products, and building of software for release. The
requirements contained here summarize essential functionality that is currently used or
known to be needed by supported experiments and other users.

1.2 Overview

The Product management system (section 5) makes software available to end-users. We
call the atomic unit by which such software is versioned and delivered a product. The
product management tools allow users to select which versions of which products are
used together, and help prevent the simultaneous use of incompatible products.

The Product development system (section 6) is used by the developer of a product; in
particular, it is used to build, test, and package the code for use by others as an external
product.

The Product integration system (section 7) is used by developers of a suite of related
products, which must be built in concert as a consistent whole, avoiding inconsistencies,
and without undue inconvenience.

The Software release build system (section 8) is used by release managers to create coher-
ent sets of products of known version that can be managed by the product management
tools. The source and the build system of each product may or may not be under the
control of the people doing the packaging. The software release build system must build
the product using its own build system in a manner compatible with the behavior of the
product management tools (section 5).

While the development and integration systems described above may do part of the task
of the software release build system, the focus is different and the features of each
system reflect that. The development and integration systems provide fast cycle-time,
highly flexible targeted builds with careful management of both inter- and intra-product
dependencies for interactive development of code. The software release build tool, however
handles only inter-product dependencies and produces coherent suites of related software
from known versions regardless of the source of that software or the build system it uses.

For example, a LArSoft release will include GCC, Boost, SQLite and other products whose
source and build systems are not under the control of the release manager or local
developers (for which the product management and release build systems are relevant).
However, it will also include a particular version of the art suite and, of course, the locally
developed and controlled LArSoft products. A LArSoft developer may have a software

Requirements for Software Product Building and Management (Rev. 2.0) 5

development task which encompasses only one package (say, larcore) and likely will not
wish to have local copies of everything else; the product management and development
systems are applicable here. If the developer’s task encompasses multiple packages (say,
he wishes to integrate his larcore changes into the products that use it), then the product
integration system also comes into the equation.

1.3 Scope

The scope of the requirements described in this document is the software developed
by and for the stakeholders listed in section 2, and the products relied upon by that
software.

This document does not cover the topic of product deployment.

This document does not address the issue of naming conflicts between libraries, executa-
bles and possible other entities in different products.

1.4 Terminology

ABI: An application binary interface (ABI) is the low-level interface between two program
modules, and determines such details as how functions are called and in which
binary format information should be passed from one program component to the
next, relating to how a binary product was built. For C++ and Fortran software, the
compiler version and the operating system version are critical for ABI compatibility.
For Python software, byte-code compiled libraries are compatible across operating
systems, but not generally across Python interpreter versions. Often, ABI mis-
matches can lead to linking failures. Sometimes they lead to more subtle errors,
and are very difficult to diagnose.

API: An application programming interface (API) is the source-code level interface between
two program modules. It is related to source code version. API mis-matches typically
lead to compilation failures.

active product: An active product is one that is currently being used. For executables,
this means they are found on the PATH; for libraries, that they will be loaded when
needed, etc. Only one variant of a given product can be active at one time.

available product: An available product is one that can be made active using the product
management tool’s command(s) to activate the product. Many variants of a given
product may be available at the same time.

closed link: A closed link is the linking of a dynamic library leaving no unresolved sym-
bols.

evaluation of a test: Evaluation of a test means determining whether the given test suc-
ceeds or fails.

external product: An external product is one for which the builder of the product is not
in control of the software or its build system.

integration build area: An integration build area is a collection of build areas, managed
in coherent fashion.

locally-developed product: A locally-developed product is one whose source is under the
control of the developer or release manager.

package (v.): To make a product ready for distribution.

6 Requirements for Software Product Building and Management (Rev. 2.0)

product: See software product.
product build area: A build area is a directory tree into which is put the files generated

by the building of standard build targets for a single software product.
product source area: A product source area is a directory tree containing the source code

for a single software product. Such a product source area should always be under
the control of a source code management system.

release: A particular coherent set of products of known version.
setup (v.): Produce an environment in which the software can be built or in which a

consistent group of products can be used.
software product: A software product (also shortened to product) is an identifiable, sepa-

rately packaged body of software. It can include such software entities as libraries,
executables, C and C++ headers, documentation and executables. A product is built
and delivered as a unit, and is the smallest unit of versioning.

source code management system: A source code management (SCM) system is a system
used for version control of source code. These systems are also called source code
repositories.

standard build targets: A build system typically supports the following list of high-level
targets, which we call standard build targets. These include:
default: The execution of targets that produce files. These include executables,

libraries, and test programs. Also known as the build stage or (for historical
reasons), the all target.

test: Runs user-provided integration and unit tests.
install: Installation of executables, libraries, headers, etc, in the appropriate loca-

tion(s).
package: The production of an “installation kit,” suitable for distribution of the

build products, to be used without requiring the ability to build the product.
clean: The removal of produced files.
help: List available individual component targets, such as libraries, executables

and object files.
target: A target is an identifiable sub-component of a development build procedure that

usually (but not always) corresponds to a generated file. Examples would be a
particular executable, library or test.

umbrella product: An umbrella product is a software product that contains only depen-
dencies on other products, and has no additional code, libraries, data files, or
executables of its own.

user: The generic term user refers to a person fulfilling any of the roles defined in
section 3.

variant: A variant of a product is a particular version and built configuration of a product.
Here, “built configuration” could include such attributes as the platform, compiler
used, debug or optimization level, or optional feature set.

version: The version of software specifies the source code text of the software. It deter-
mines the API to which users of a product program, e.g. the number and types of
the arguments for a specific function.

1.5 How to read the requirements

Requirements are grouped by system (as specified in section 1.2) and type. The types
are behavioral, performance, and constraint. Each subsection within a type typically

Requirements for Software Product Building and Management (Rev. 2.0) 7

contains one requirement. The name of the subsection is the name of the requirement.
The first paragraph of each of these subsections describes the requirement. The following
paragraphs, if any, provide examples and further supporting information about the
requirements. An example of this format may be seen clearly in requirement 5.2.1.

For performance requirements, it is assumed that the average load per core on the
test machine is not greater than 1.0. Furthermore, it is assumed that when network
filesystems or any network attached storage is used for product management, the
underlying network resources are not oversubscribed or under-engineered for normal
interactive or batch system use during evaluation or testing of systems claiming to meet
the contained requirements. Quantitative numbers for network resources needs can be
provided if necessary.

2 Stakeholders

Stakeholders include:

1. The SSD Group, who deliver software used by many independent experiments and
projects.

2. The experiments and project groups using the software delivered by the SSD Group.
These include:

• Experiments from the Intensity Frontier:
– NOνA
– Mu2e
– Muon g-2
– µBooNE
– ArgoNeuT

• Other experiments and projects:
– Darkside/ DS50
– CosmoSIS

• Developers of toolkits and products used by multiple experiments:
– Nutools
– LArSoft
– artdaq
– IFDH
– artG4
– ifbeam

3 Roles

The roles interacting with all systems described herein include:

1. Scientist-developers (usually shortened to developers), who develop and use code
from their experiments. They also rely on software products delivered through the
product management tools.

8 Requirements for Software Product Building and Management (Rev. 2.0)

2. Product suppliers, who make external software products available through the
product management tools.

3. Release managers, who produce official releases of experiment software that relies
upon products available through the product management tools.

4. Release installers, who are responsible for installation and maintenance of a set of
installed products for a given set of computers.

4 General requirements

All systems specified in this document shall satisfy the following requirements.

4.1 Behavioral requirements

4.1.1 Ability to override certain products from a known release

The system shall provide the ability to override by local compilation a number of products
from installation areas containing consistent releases, while utilizing other pre-compiled
products from elsewhere, subject to binary compatibility constraints. See specific re-
quirements 5.2.9, 5.3.1, 7.2.1 and 7.2.2.

4.2 Constraints

4.2.1 Supported operating systems

Platform support for specified systems shall include:

1. Scientific Linux 6, and compatibles (e.g. SLF6, RHEL6, CentOS6).

2. Scientific Linux 5, and compatibles (e.g. SLF5, RHEL5, CentOS5).

3. Mac OS X “Mountain Lion” (10.8, Darwin 12).

4. OS X “Mavericks” (10.9, Darwin 13).

Future platforms are expected to include SLF7 (and related RHEL derivatives), Ubuntu 12
and related derivatives (e.g. Mint), and newer versions of OS X.

4.2.2 Shell support

The integration system shall operate with full functionality when invoked from the
following shells:

• bash

• tcsh

• zsh

Requirements for Software Product Building and Management (Rev. 2.0) 9

The minimum version of each shell that shall be supported shall correspond to that
found on RHEL5 and associated systems.

5 Requirements for product management

5.1 Description

A product management system makes products available for use and manages which
products are active at any time. The use described here includes running executable
programs and providing libraries, headers, and modules necessary for the development
of other tools and executable programs. A key feature of this system is the ability to
manage a versioned collection of products, in which each product has a specific version.
The system must allow all the products in the collection to be made active using the
name, version, and (possibly null) variant names assigned to the collection.

5.2 Behavioral requirements

5.2.1 Multiple versions

It must be possible to have available multiple versions of the same product. The version
of a product specifies the source code text used to build the product; a different source
code text will get a different version number.

When a developer is working on adapting his own code to deal with a new version of an
underlying product, it is important to be able to allow the use, on the same machine, of
both the “old” and “new” versions of the underlying product.

When a product supplier is building and testing a new version of a product, it is important
to conveniently switch from one version of the product to another.

5.2.2 Multiple ABI variants

It must be possible to have available multiple ABI variants of the same version of a
product. An ABI variant specifies how a product was built in any and all ways that
determine binary compatibility.

Developers do not want to waste time (their own, or that of the product suppliers that
support them) debugging issues related to binary incompatibility. Such issues are
especially subtle for C++ and Fortran code.

Developers want to be able to move easily from using a “release quality” build to a “debug
quality” build of underlying software.

A release installer must be able to support multiple experiments or projects or both, and
so to make available the ABI variants required by each supported experiment or project.

5.2.3 Multiple sets of optional components

It must be possible to have available multiple sets of optional components for the same
version and ABI variant of a product. Examples include whether or not RooFit is included

10 Requirements for Software Product Building and Management (Rev. 2.0)

in the build of ROOT , and whether the MPI library used in an application is MPICH or
MVAPICH. Note that in the latter case, the different choices of optional component are
mutually exclusive.

Release managers want to have the ability to decide, for their experiments, which set
of dependencies will be used, e.g. what MPI implementation shall be relied upon, or
whether their ROOT version will depend on Geant4.

5.2.4 Exclusivity of active products

The product management system shall ensure that only one version and variant of a
product shall be active at any time in a particular environment.

5.2.5 Consistency of active products

The product management system must help assure that only consistent sets of products
are made active, and that an attempt to make active an inconsistent set of products is
stopped, with the user informed of the reason for the error.

Developers do not want to waste time (their own, or that of product suppliers that support
them) debugging issues (either build issues or software behavior issues) resulting from
the use of incompatible products.

A release manager responsible for physics verification and validation of a given release
must be certain that the expected set of products is being used.

5.2.6 Products must be installable without system privileges

The product management system must not require system privileges for the installation of
products. Not all users (especially not all scientist developers) will have system privileges
on the machines on which they work. For some university groups, especially those using
shared university resources, the release installer may not have system privileges.

5.2.7 Installation must not specify a specific mount point

The product management system must not require that the software be installed at
a particular mount point. Requirement of a specific mount point may clash with an
already-established mount point, and may not be possible without system privileges.

5.2.8 Management of product dependencies

The command to make a product active must make active all necessary supporting
products. It must make active the correct version, ABI variant, and set of optional
components.

The user of a product should not be required manually to activate the full set of depen-
dencies of a product in order to use it.

Requirements for Software Product Building and Management (Rev. 2.0) 11

5.2.9 Ability to use products installed privately, simultaneously with
other products

It must be possible for the user to replace a product with a different but compatible build
of the same product, visible to no-one else, while still using other products, not privately
installed.

The developer must be able to explore the use of new software, including new versions or
new builds of existing products, without disrupting the work of others.

5.2.10 Reporting on active or available products

It must be possible for a user to ask for the list of currently active products. It must be
possible for a user to ask for the list of currently available products. It must be possible
for a user to request the list of products that a product depends upon.

5.2.11 Umbrella products

The user shall have the ability to define a product that consists only of dependencies.
When this product is made active, it causes other products to be made active.

5.2.12 Registration of non-relocatable products

On the rare occasion that it might be necessary, a user shall be able to make available a
product which cannot be moved from its original installation location.

An example would be a proprietary driver that may be non-redistributable due to license
or non-relocatable due to limitations in the code or build system. Some external software
products, for example, have their installation location compiled in to allow them to access
support files (/usr/share or equivalent, say).

5.2.13 Removal of products

A user of the product management system with appropriate privileges shall be able easily
to remove a product from the filesystem without disturbing other products or other
versions or variants of the same product. The user shall not have to specify individual
files.

5.2.14 Automatic platform selection

The product management system, when making a particular product active, shall not
require the user to specify the platform: the system should select automatically the
product matching the current platform unless specified otherwise.

5.3 Performance requirements

5.3.1 Ability to install pre-built products

The system must not require the in-place building of all products. Many individual
products take a considerable amount of time to build; e.g. it takes much longer to build
GCC than to install from a pre-built binary distribution.

12 Requirements for Software Product Building and Management (Rev. 2.0)

All stakeholders currently have the ability to use pre-built distributions, and most want
to retain it.

5.3.2 Non-duplication of already-installed products

It must be possible for a user that has already installed a given ABI variant of a given
product to use that already-installed software, rather than requiring the installation of a
(redundant) product in another location.

Several institutions in the stakeholder communities have disk space issues due to shared
resources. Experiments also wish to have multiple releases on hand simultaneously but
do not wish to have separate copies of the same possibly large products in each release.
One-point maintenance for a particular product variant is also desirable.

5.3.3 Speed of setup

For an interactive system, when used with a product tree of 100 products, it must take
no more than 10 seconds to make the specified set of products active. Under batch
processing scenarios, the setup time may not take a majority of the initialization time.

Products are known to be available through the following resources:

1. AFS,
2. CVMFS,
3. NFS, and
4. locally installed products.

For each of the file access facilities above that requires network transfers (all except local
disk), the available systems must be able to operate at sufficiently high bandwidth, such
that the network does not take a majority of the setup time.

5.3.4 Shell responsiveness

For an interactive system, when used with a collection of 100 active products, the system
must not make executing common commands (e.g. ls) more than one second slower.

5.4 Constraints

5.4.1 Simultaneous active products

The product management system shall support at least 100 simultaneous active products
without exhausting shell resources with supported shells on supported platforms.

6 Requirements for product development

6.1 Description

A product development system is used to build, test, install, and package software.
Building in this case typically means compilation, producing executable programs or

Requirements for Software Product Building and Management (Rev. 2.0) 13

dynamic libraries, or both. For Python, building includes byte-code compilation of
modules.

6.2 Behavioral requirements

6.2.1 Support for out-of-source builds

The development build system shall be configurable to put files generated by the build
procedure into a directory tree which is distinct from the product’s source directory tree.

This simplifies the job of source control for developers. It is easier also to operate on
systems with disk quotas on backed-up filesystems. Also, if the source is on a slower,
likely remote system, build times will be improved by out-of-source builds.

This requirement does not specify that the user should configure or execute the build
from any particular directory.

6.2.2 Support for all standard build targets

The development build system shall support all standard build targets as defined in
section 1.4).

6.2.3 Support for the default build target

The development build system shall provide support for the following build operations:

1. Running of the preprocessor, and saving of the output, for all languages that use a
preprocessor.

2. Run code generators to generate files to be used by other targets.
3. Perform template-based text substitution using information known at build time.

An example of such information is whether the build being done is “debug” or
“optimized”.

4. Compilation of source code to object code for all supported languages.
5. Production of shared libraries from user-specified lists of object code.
6. Production of Fortran module files.
7. Production of executables from source code in supported languages, object code

and/or shared libraries.

6.2.4 Support for the test build target

The development build system shall support the specification, execution and evaluation
of tests. This functionality shall include:

1. The running of interpreted scripts, built executables or external programs with
specified arguments.

2. The evaluation of a test based on its exit code.
3. The evaluation of a test based on presence of an expression in the output.
4. The ability to chain several tests, with one test’s output forming another’s input.

14 Requirements for Software Product Building and Management (Rev. 2.0)

6.2.5 Test output must be brief and clear

The output written to the terminal by the test target must be brief, so that failed tests
are obvious.

6.2.6 Access to full test output

Notwithstanding requirement 6.2.5, the development build system shall save and provide
access to the full output for all tests in order to avoid having to re-run them to examine
details.

Intermittent failure of tests is not uncommon, either due to mis-specification of depen-
dencies between tests, or other factors such as load-dependent timeout failure. If the
details of the original failure are not preserved, it could take some time to reproduce the
problem.

6.2.7 Support for the install build target

The system shall support the installation of a product into a developer-specified area
distinct from the defined build area consistent with the product management facilities
described in section 5.

6.2.8 Support for the package build target

The system shall support the production of a product installation entity consistent with
the product management facilities described in section 5.

For example: if the product management system is UPS, then this would be a product
installation tar file.

6.2.9 Support for the clean build target

The build development system shall on demand remove files produced by the default and
test targets.

6.2.10 Support for the help build target

The build development system shall on demand list the targets available in the current
context.

6.2.11 Specification of non-system compilers

The system shall enable the building of the product with a compiler other than the system
compiler.

6.2.12 Build verbosity

By default, the system shall not display the individual commands used to build each
target. However, the developer shall be able to specify that the system show such detailed
information.

Requirements for Software Product Building and Management (Rev. 2.0) 15

Under normal circumstances, this level of detail is unnecessary and detracts from the
developer’s ability to spot problems building targets. However, being able to see exactly
which commands are executed becomes important once problems are encountered.

6.2.13 Specification of configuration for ABI variants

The system shall support the command-line selection of one of a set of configurations of
ABI variants, (e.g. debug or release-quality), upon establishment of the build area. See
also requirement 5.2.2.

6.2.14 Single-location specification of options for ABI variants

The system shall enable the specification of configuration options by ABI variant for each
build operation for all operations of that type.

For instance, one should not have to specify -g -O0 for each and every debug compilation
of a C or C++ source file with GCC.

6.2.15 Ability to add new supported languages

The system shall provide the ability to add support for a new compiled language without
modification to the core build system.

6.2.16 Ability to add new supported code generators

The system shall provide the ability to add support for a new code generator without
modification to the core build system, integrating its products into the build procedure.

6.2.17 Configuration of particular build operations

Developers must have the option of overriding the default set of options for the building
of specific build targets.

For example, some source code units fail to compile with -O3 optimization; the developer
must be able to specify the use of some other optimization flag for that compilation unit.

A second example is the need to specify a preprocessor defined symbol for a particular
compilation unit.

6.2.18 Automatic rebuild

The development build system shall automatically determine which build targets are out
of date with respect to their dependencies and rebuild them as appropriate.

This includes implicit dependencies, such as recursively included headers in C and
C++. This is the sort of thing typically done by makedepend. It also includes explicit
dependencies such as libraries.

6.2.19 Test dependencies

The developer shall be able to specify that one test depends upon the result of another,
and must therefore be executed first.

16 Requirements for Software Product Building and Management (Rev. 2.0)

6.2.20 External dependencies

The developer shall be able to specify external dependencies (e.g. libraries, executables)
from other products than the one being built that the development build system shall
ensure are satisfied in order to build the product.

6.2.21 Ease of use of external dependencies

The system shall provide a way for a developer to use the code in other products without
having to specify the compiler options explicitly for that code and its dependencies, if
any.

In order to use code from ROOT , which may in turn use Geant4 (among other things) a
developer should not have to specify all the -I, -L, -l (and possibly -D...) required by
ROOT , Geant4 and the rest of their dependencies. If the development system were to
leverage CMake, this functionality would be provided by leveraging the config.cmake
files and the find package facility.

6.2.22 External dependent products

The developer shall be able to specify dependencies for a product by product, version and
variant.

For example: the release-quality build of art using GCC 4.8.2 to the C++ 2011 stan-
dard requires as a dependent product ROOT 5.34.18 built the same way. Similarly,
the debug-quality build of art will require the debug-quality build of ROOT . See also
requirements 6.2.23 and 6.4.1.

6.2.23 Specify different dependent product versions by variant

The developer shall be able to specify different versions or variants of a dependency
differently according to the particular variant of the product being built. This shall
include being able to specify a dependent product for one variant, but not at all for
another variant.

For example: the art developer may need to provide a variant of version 1.10.03 built
with GCC 4.8.2 and additionally a variant built with GCC 4.9.1.

See also requirements 6.2.22 and 6.4.1.

6.2.24 Ease of specification of targets

It shall be easy for the developer to specify targets, both of types built into the development
build system, and those added by the developer or his organization. It is a specific
requirement that targets with multiple sources shall be specifiable without naming every
individual source (e.g. file wildcards for library constituents).

6.2.25 Programmatic identification of library versions

The development build system shall mark each dynamic library with its product version
in such a way that the version may be obtained programmatically.

Requirements for Software Product Building and Management (Rev. 2.0) 17

A developer will find this information useful while debugging new developments to one or
more products that may be part of a coherent whole. Implementation of this requirement
is also a prerequisite for implementation of requirements 6.2.26 and 7.2.2.

6.2.26 Identification of unofficially-built code

The development build system shall provide the means to distinguish programmatically
between libraries built unofficially from possibly uncontrolled sources and those packaged
for release as a tagged version of the product.

Experiments need to be assured that a production release is built from only sanctioned
sources.

6.2.27 Partial builds

The developer shall be able to build of one or more targets of the product as specified on
the command line, with associated dependent targets being built automatically, without
having to configure or build the whole system.

Examples would be a particular executable, library, generated code item, preprocessed
source or the execution of a particular test.

6.2.28 Cross-compilation

The development build system shall support the use of cross compilers to produce a
product suitable for use on an architecture different from that used to produce the
compiled product.

6.3 Performance requirements

6.3.1 Parallel build capability

The development build system shall reliably execute as many build tasks in parallel as
are compatible with the requested parallelism and the interdependencies of the individual
targets.

6.3.2 Parallel test capability

The development build system shall reliably execute as many tests in parallel as are
compatible with the requested parallelism and the interdependencies of the individual
targets.

6.4 Constraints

6.4.1 Integration with product management system

The development build system shall utilize the product management system for the
purposes of making particular versions and variants of dependent products active for a
build.

See requirements 6.2.22 and 6.2.23.

18 Requirements for Software Product Building and Management (Rev. 2.0)

6.4.2 art suite support

The development build system shall build items known to be required by art and other
products according to defined naming conventions. These items are:

• ROOT dictionaries (identified by dict name suffix),
• art and artdaq plugins (identified by module, service, source and generator

name suffixes),
• SMC state charts (file extension .smc).

Currently several types of files requiring special compilation rules or code generators
are identified through naming conventions. The art framework allows the user’s data
model to be extended using the ROOT dictionary generators. There are several different
plugin types within art and artdaq: modules, services, input sources and generators.
Information is added to the resulting shared libraries to locate them at runtime and also
to discover their entry points.

6.4.3 Language support

The development build system shall support the compilation of source code for the
following languages:

• C.
• C++.
• Fortran.
• CUDA.
• Python: interact with the official distutils system to build and install correctly

constituted python packages, modules and scripts, including those which provide
python language extensions and interface with non-Python code and libraries.

6.4.4 Code generator support

The development build system shall support use of the following code generators, inte-
grating their products into the build procedure:

• flex/lex.
• bison/yacc.
• SMC1.
• moc2.
• rootcint, genreflex/GCC-XML and cling (ROOT dictionaries).
• swig3.

1http://smc.sourceforge.net.

2The Qt meta-object compiler. See http://qt-project.org/doc/ for details

3http://www.swig.org.

http://smc.sourceforge.net
http://qt-project.org/doc/
http://www.swig.org

Requirements for Software Product Building and Management (Rev. 2.0) 19

6.4.5 Product building capability

Products built by the build system shall be consistent with the product management
facilities described in section 5.

Since the development group is a user of the development environment, it is critical
that the development environment support the building of the products that we deliver
through the product management system.

For instance: the requirements that products be relocatable (5.2.6, 6.2.3, 5.3.1) has
implications for the build system that must be taken into account.

6.4.6 Automatic dependency determination

The development build system shall be able to automatically determine the source code
dependencies for the following languages:

• C
• C++
• Fortran

6.4.7 Linking dynamic libraries

The development build system shall support closed links. The default build of a dynamic
library shall be closed.

Failure to create closed links delays the time until some types of build error are discovered.
This makes fixing these errors more difficult.

7 Requirements for product integration

7.1 Description

A product integration system coordinates the simultaneous development and building
of multiple products, performing software development tasks involving one or more of
the coordinated products. This system references a collection of product source areas
and permits building these products into a product build area. Typically the collection of
products will form a chain of dependencies. This system ensures that changes in one
product will automatically cause targeted rebuilding in dependent products, maintaining
a consistent whole. A developer will typically go through a development and test cycle for
one or more software features across a set of related products operating within one build
area.

7.2 Behavioral requirements

7.2.1 Build multiple products

The integration system shall be capable of orchestrating the build and installation of one
or more products. This includes correct dependency handling between products. This
ability must extend through layers of dependencies.

20 Requirements for Software Product Building and Management (Rev. 2.0)

Within the context of art, a change in cetlib that affects fhicl-cpp, and therefore affects art
must cause all affected files to be rebuilt in all affected products. For example: within the
art suite, art depends on fhicl-cpp both explicitly and via messagefacility. A developer
may wish to make changes in fhicl-cpp and see the effects in the art framework. It is the
job of the integration system to calculate the pieces of messagefacility and art that are
affected by the fhicl-cpp changes and automatically rebuild them.

7.2.2 Build integrity

The integration system shall fail to setup an inconsistent set of products. This failure
shall include a diagnostic useful in aiding the developer to isolate and resolve the source
of the inconsistency.

It is necessary to ensure the integrity of the build against inconsistent use of headers and
libraries from products built within and without the integration system, as inconsistent
build are always wrong, even if the undefined behavior so produced occasionally matches
the desired behavior. Difficult to trace memory errors and bad results are the far more
common results of such inconsistencies. Experimenters and art experts have wasted
time and experiments have wasted data due to inconsistent builds.

As an example: art depends on messagefacility, which depends on fhicl-cpp. An attempt
to build art and fhicl-cpp without also building messagefacility must fail.

The development system requirements 6.2.25 and 6.2.26 are relevant to implementation
of this requirement.

7.2.3 Check for missing products

The integration system shall provide a tool for a user to identify which products from a
named release must be added to those orchestrated currenlty in order to guarantee a
consistent build.

This requirement implies a user-invocable tool which provides the functionality which
must be present to implement requirement 7.2.2.

7.2.4 Identify dependent products

The integration system shall provide a tool for a user to identify which products from
a named release not being orchestrated currently by the integration system may be
obsoleted by changes to the products currently being orchestrated.

A developer making local changes to products might want to be aware of which (if any)
products not currently being orchestrated would need to be updated in order to take
account of those changes.

7.2.5 Check out products from SCM systems

The integration system shall provide the facility to check out a particular version (or
branch, if applicable) of a product’s source from SCM systems using a single SCM
system-agnostic command.

Requirements for Software Product Building and Management (Rev. 2.0) 21

7.2.6 Add support for new SCM systems

The integration system shall support the addition of new SCM systems without having to
alter the core system.

7.2.7 Dependency version management

The integration system shall enable the user to update the version number of a product,
and update the use of that product in products requiring it as a dependency while
ensuring consistency per requirement 7.2.2.

The manual editing of multiple version specifications is error-prone; the system must
provide the facilities to reduce the incidence of such errors. Note that the version number
of a product is specific to that product, and does not necessarily bare any relation to the
versions attached any releases of which it may be a part.

7.2.8 New product skeleton

The integration system shall create a new product directory structure on demand consis-
tent with the structure required by the product development system.

This functionality should provide for the simple insertion of the new product into an
existing empty remote repository for any supported SCM system.

7.2.9 Multiple integration builds using single product source area

The system shall allow a single product source area to be used simultaneously by two or
more distinct integration builds.

For example, it is useful to be able to make both release- and debug-quality builds of
the same set of product sources. Using exactly those same sources rather than copies
thereof ensures synchronization between the different qualities of build.

7.2.10 Identification of product build area

The system shall provide the means to identify the particular build area used for a given
integration build.

7.2.11 Identification of product sources used

The system shall provide the means to identify the product sources used for a given
integration build.

7.2.12 One-step invocation for common tasks.

The product integration system shall provide one-step invocation of tools to execute the
following common tasks:

1. Setting up for development.
The integration system shall initialize for a new build with a single command.

2. Checking out products from known locations without specifying full URLs.
See also requirement 7.2.5.

22 Requirements for Software Product Building and Management (Rev. 2.0)

3. Executing standard build targets.
See also requirements 7.4.1, 7.4.5 and 6.2.2.

4. Packaging one or more products.
See also reqiurement 7.4.2.

7.3 Performance requirements

7.3.1 Parallel operation across products

The product integration system shall, when appropriate, execute build operations in
parallel across products.

7.4 Constraints

7.4.1 Integration with product development system

The product integration system shall work with products utilizing the product develop-
ment system (section 6). It shall not be required to work with any other build system.

7.4.2 Integration with product management system

The integration system shall utilize the product management system to ensure the
availability and consistency of external dependencies of all products being orchestrated
currently by the integration system.

7.4.3 Support checkout from named SCM systems

The implementation of requirement 7.2.5 shall support both Git and Subversion systems,
and conveniently support the common case where these repositories are hosted by FNAL’s
Redmine system.

7.4.4 No constraints on origin of product source

The integration system shall place no restrictions on the origin of any product sources
currently orchestrated: any mix of sources from any origin is permissible, including any
SCM, no SCM or symbolic links.

7.4.5 No constraints on use of product development system

The user of the integration system shall continue to be able to make full and unrestricted
use of the product development system with respect to any individual product being
orchestrated currently by the integration system. This shall include, but is not limited to
being able to compile, build or test individual components of such a product.

7.4.6 No constraints on product variant selection

The integration system shall not restrict the selected variants of the products being built
except to ensure that they are consistent.

Requirements for Software Product Building and Management (Rev. 2.0) 23

The subject of selected variants is discussed in requirements 5.2.1, 5.2.2, 5.2.3,
and 8.2.9.

8 Requirements for build tool for release managers

8.1 Description

The build tool for release managers is used for the building, installation, and packaging
of specified versions of multiple products. These may be external products or locally
developed products.

8.2 Behavioral requirements

8.2.1 Product build instructions must be self-contained

The user must be able to describe, as a self-contained entity, the instructions for building
a particular product; the system must be responsible for locating and executing the build
instructions for necessary dependencies.

8.2.2 No constraints on product build system

The system for coordinating and controlling the release build of software products shall
be agnostic with respect to the build system utilized by any one product, and not restrict
the choice thereof.

8.2.3 Products specify only direct dependencies

The configuration for a product shall require specification of only direct dependencies.

The user should not have to further specify the full list of implied dependencies, otherwise
there is scope for inconsistency and error.

8.2.4 Bulk building

The user must be able to specify a group of not-necessarily-related products to build as a
set, and to build a series of multiple products in the correct order as specified by their
dependencies.

8.2.5 Umbrella products

A user must be able to cause the system to construct and package an umbrella product,
as understood by the product management system (see requirement 5.2.11).

8.2.6 Forced rebuilds

The system must be capable of rebuilding a particular product, checking for the presence
of dependencies and (at the user’s option) either recursively building those dependencies
or failing due to missing dependencies.

24 Requirements for Software Product Building and Management (Rev. 2.0)

8.2.7 Automatic rebuild of dependent products

The system shall provide the option of automatically rebuilding (or not) products which
depend on a product which has been rebuilt.

A release manager may wish to rebuild a product upon which other products may depend.
This may or may not imply that products depending upon it should be rebuilt, depending
on the particular reason for the rebuild. Improving the robustness of the build procedure
for a particular product would not require rebuilding dependent products, for example;
adding a necessary patch would.

8.2.8 Updating versions of dependent products

The user must be able to easily update version numbers of dependencies of an updated
product, within a defined, coherent set, when required.

For example, when the version of SQLite is updated, it must be easy for the user to
update the versions of all products that depend upon SQLite (Python, and everything
that depends upon Python).

The more manual steps involved in this process, the more there is scope for inconsistency
and error.

8.2.9 Multiple ABI variants

The system must be capable of building multiple named variants of the same product and
version (compiler, feature set, etc.), with dependencies specified including version and
variant. It should not be assumed that binary-compatible products will have identical
variant names.

Note that this requirement implies the ability to control what compiler and what version
of that compiler is used, including the use of cross-compilers.

Products, depending on their source language, may have different dependencies on a
particular compiler or set of options (C++ 2011, for example). A given set of products (e.g.
for Mu2e) may have different variants (e.g. debug vs. prof, GCC 4.8.1. vs. GCC 4.8.2 vs.
ICC) that should be propagated down through dependencies.

As an example of consistency and compatibilty of products, a C++-based product with a
variant label e5 may rely upon a build of a C-based product with a null variant identifier.

As a further example, the CodeSynthesis XSD product requires access at build-time to
Boost and xerces-c products which have been built using a particular version of GCC to
the C++ 2003 standard. Other products in the release require (both at build and use-time)
those same products built to the binary-incompatible C++ 2011 standard. There is no
inconsistency here as CodeSynthesis XSD consists only of programs, not libraries and
therefore with static linking, the C++ 2011 versions of Boost and xerces-c can be used
simultaneously with CodeSynthesis XSD without causing inconsistencies.

Requirements for Software Product Building and Management (Rev. 2.0) 25

8.2.10 Flexibility between ABI variants and optional component sets

The user must be able to describe dependencies between products that differ for different
versions, ABI variants, sets of optional components or platform (see requirements 5.2.1
and 5.2.2.

8.2.11 Single authoritative specification of dependencies

The specification of dependencies must be done in only one place. The specification
of what is built and installed should determine what entries are put into the product
description.

If a product installs headers, the appropriate means for users to establish compiler
include-flags correctly must be made.4

8.2.12 Production of distribution manifests

The system must be able to produce a list of the distribution package files corresponding
to a specified group of products.

8.3 Performance requirements

8.3.1 Partial rebuilding

The system must be capable of skipping already-built products, and of forcing a rebuild
starting at a particular point in the sequence.

8.3.2 Efficient use of multi-core build machines

The system must be able to run, in parallel, builds of non-related products. This is so
that we can make efficient use of multi-core build machines.

The system must be able to take advantage of parallelism within the build of individual
products, when available (e.g. make -j <ncores>). This is so that we can make efficient
use of multi-core build machines.

8.4 Constraints

8.4.1 Build for all officially-supported platforms

The build system must be able to operate on all the platforms and architectures we
support. This does not include running on platforms for which we will cross-compile
code, but does include the ability to run on the host system from which we will do the
cross-compilation.

This does not require the system to be able to build a product on a platform or architecture
not supported by that product.

4For example, in UPS this is done by specifying how the INC environment variable should be set.

26 Requirements for Software Product Building and Management (Rev. 2.0)

8.4.2 Integration with product management system

The build system must be able to integrate with the product management system without
undue work for the packager of a particular product.

The user should not have to specify e.g. product dependency in multiple places in order
to inform both the build system and the product management system (section 5) of
dependencies.

	1 Introduction
	1.1 Purpose
	1.2 Overview
	1.3 Scope
	1.4 Terminology
	1.5 How to read the requirements

	2 Stakeholders
	3 Roles
	4 General requirements
	4.1 Behavioral requirements
	4.1.1 Ability to override certain products from a known release

	4.2 Constraints
	4.2.1 Supported operating systems
	4.2.2 Shell support

	5 Requirements for product management
	5.1 Description
	5.2 Behavioral requirements
	5.2.1 Multiple versions
	5.2.2 Multiple ABI variants
	5.2.3 Multiple sets of optional components
	5.2.4 Exclusivity of active products
	5.2.5 Consistency of active products
	5.2.6 Products must be installable without system privileges
	5.2.7 Installation must not specify a specific mount point
	5.2.8 Management of product dependencies
	5.2.9 Ability to use products installed privately, simultaneously with other products
	5.2.10 Reporting on active or available products
	5.2.11 Umbrella products
	5.2.12 Registration of non-relocatable products
	5.2.13 Removal of products
	5.2.14 Automatic platform selection

	5.3 Performance requirements
	5.3.1 Ability to install pre-built products
	5.3.2 Non-duplication of already-installed products
	5.3.3 Speed of setup
	5.3.4 Shell responsiveness

	5.4 Constraints
	5.4.1 Simultaneous active products

	6 Requirements for product development
	6.1 Description
	6.2 Behavioral requirements
	6.2.1 Support for out-of-source builds
	6.2.2 Support for all standard build targets
	6.2.3 Support for the default build target
	6.2.4 Support for the test build target
	6.2.5 Test output must be brief and clear
	6.2.6 Access to full test output
	6.2.7 Support for the install build target
	6.2.8 Support for the package build target
	6.2.9 Support for the clean build target
	6.2.10 Support for the help build target
	6.2.11 Specification of non-system compilers
	6.2.12 Build verbosity
	6.2.13 Specification of configuration for ABI variants
	6.2.14 Single-location specification of options for ABI variants
	6.2.15 Ability to add new supported languages
	6.2.16 Ability to add new supported code generators
	6.2.17 Configuration of particular build operations
	6.2.18 Automatic rebuild
	6.2.19 Test dependencies
	6.2.20 External dependencies
	6.2.21 Ease of use of external dependencies
	6.2.22 External dependent products
	6.2.23 Specify different dependent product versions by variant
	6.2.24 Ease of specification of targets
	6.2.25 Programmatic identification of library versions
	6.2.26 Identification of unofficially-built code
	6.2.27 Partial builds
	6.2.28 Cross-compilation

	6.3 Performance requirements
	6.3.1 Parallel build capability
	6.3.2 Parallel test capability

	6.4 Constraints
	6.4.1 Integration with product management system
	6.4.2 art suite support
	6.4.3 Language support
	6.4.4 Code generator support
	6.4.5 Product building capability
	6.4.6 Automatic dependency determination
	6.4.7 Linking dynamic libraries

	7 Requirements for product integration
	7.1 Description
	7.2 Behavioral requirements
	7.2.1 Build multiple products
	7.2.2 Build integrity
	7.2.3 Check for missing products
	7.2.4 Identify dependent products
	7.2.5 Check out products from SCM systems
	7.2.6 Add support for new SCM systems
	7.2.7 Dependency version management
	7.2.8 New product skeleton
	7.2.9 Multiple integration builds using single product source area
	7.2.10 Identification of product build area
	7.2.11 Identification of product sources used
	7.2.12 One-step invocation for common tasks.

	7.3 Performance requirements
	7.3.1 Parallel operation across products

	7.4 Constraints
	7.4.1 Integration with product development system
	7.4.2 Integration with product management system
	7.4.3 Support checkout from named SCM systems
	7.4.4 No constraints on origin of product source
	7.4.5 No constraints on use of product development system
	7.4.6 No constraints on product variant selection

	8 Requirements for build tool for release managers
	8.1 Description
	8.2 Behavioral requirements
	8.2.1 Product build instructions must be self-contained
	8.2.2 No constraints on product build system
	8.2.3 Products specify only direct dependencies
	8.2.4 Bulk building
	8.2.5 Umbrella products
	8.2.6 Forced rebuilds
	8.2.7 Automatic rebuild of dependent products
	8.2.8 Updating versions of dependent products
	8.2.9 Multiple ABI variants
	8.2.10 Flexibility between ABI variants and optional component sets
	8.2.11 Single authoritative specification of dependencies
	8.2.12 Production of distribution manifests

	8.3 Performance requirements
	8.3.1 Partial rebuilding
	8.3.2 Efficient use of multi-core build machines

	8.4 Constraints
	8.4.1 Build for all officially-supported platforms
	8.4.2 Integration with product management system

