
Guidelines for the Use of Pointers
Date: 2007/02/07

Author: Marc Paterno <paterno@fnal.gov>

Contents
Overview and Purpose 1

Pointer Types 1

Usage Guidelines 3

For local use in functions 3

For class data members 4

Summary 4

Those interested in only the most brief summary are encouraged to skip to the Summary.

Overview and Purpose
This document provides guidelines for the use of pointers and "smart pointer" templates in art-based
software. It is intended to help you choose the best type of "pointer" for whatever problem you are solving.
For the rest of this document, the word pointer should be understood to include bare pointers and all sorts
of smart pointers.

The most important guideline is:

Guideline #1
Say what you mean, and mean what you say.

This means that you should use the pointer type that most directly conveys the purpose of the code.
Writing your code so that it clearly expresses your intent takes little extra effort, and pays large dividends
in the future. The lifetime of an experiment is quite long. The code you write today is likely to be read ---
and modified --- by you or by someone else many months or years from now. If you use a pointer type that
does not express the right intent, that later reader is likely to mistake the purpose, and modify your code
incorrectly. The resulting coding errors are often very difficult to debug. A small amount of effort used to
select the right type can prevent such troubles.

This is explained in more detail below.

Pointer Types
Smart pointer types are usually written as class templates, so that instances can be created to point to
objects of various types. Smart pointer types differ in their behavior. All support dereferencing and
member selection. The code below shows the common (but not universal) interface:

// pointer_type is not a real class template; it stands in for
// any of the real class templates named below...
pointer_type<X> p(...); // construction methods vary
X& xref = *p; // dereference
X* xptr = p.operator->(); // member selection, abnormal use
p->someMemberFunctionOfTypeX(); // member selection, normal use

The Standard Library provides only one pointer class template: std::auto_ptr<T>. To use it, one must
include the header <memory>.

mailto:paterno@fnal.gov

The Boost library, which may be used freely by any software project based on art, contains several other
pointer class templates:

• boost::shared_ptr<T> from "boost/shared_ptr.hpp"

• boost::scoped_ptr<T> from "boost/scoped_ptr.hpp"

• boost::intrusive_ptr<T> from "boost/intrusive_ptr.hpp"

• boost::weak_ptr<T> from "boost/weak_ptr.hpp"

• edm::value_ptr<T> from "FWCore/Utilities/interface/value_ptr.h"

For scoped_ptr and shared_ptr, there are also array forms. Since C++ code should rarely use arrays
(std::vector is usually preferred) we make no further mention of these array forms.

The key issue regarding choice of pointer type is the issue of resource ownership. The answer to the
question "Who is responsible for managing the memory for the pointed-to object?" most often dictates the
choice of pointer type to be used.

Each pointer type mentioned above has a different policy regarding ownership. Please note below the
difference between a pointer object (an instance of the pointer class) and a pointed-to object (the object to
which a pointer object points).

Bare pointer:

Bare pointers convey no sense of ownership. Their use should be rare.

boost::scoped_ptr<T>:

scoped_ptr implements sole ownership, with the restriction that the scoped_ptr object itself can
not be copied. If you want a pointer that is to be the only owner for some other object, and makes
sure that the pointer is not copied, so that no other pointer refers to the same object and your pointer
never gives up its object to control by another object, then scoped_ptr is the correct choice.

std::auto_ptr<T>:

auto_ptr also conveys sole ownership, but with a difference from scoped_ptr. auto_ptr
objects may be copied. Copying an auto_ptr object transfers ownership from one auto_ptr to
another. A function that takes an auto_ptr argument (by value, not by reference) takes ownership
of the object controlled by the auto_ptr. From the point of view of the caller of the function, the
function acts as a "sink": it consumes the object it was given, which is no longer available to the
caller.
This is used, for example, in the edm::Event::put function, which inserts an EDProduct into an
Event. Code that puts an object into the Event gives up control of that object; control of the object
is passed to the Event.
auto_ptr is also useful in implementing functions which return an object allocated on the heap (that
is, allocated with new). If the function in question returns the newly-created object via an auto_ptr,
this makes sure that code that calls this function takes ownership of the newly-created object. With
such an implementation, even code that fails to accept the newly-created object does not cause a
memory leak; the unnamed auto_ptr object is immediately deleted, which then deletes the
pointed-to object.

boost::shared_ptr<T>:

shared_ptr<T> implements shared ownership. Copies of a shared_ptr object share control of
the pointed-to object. shared_ptr should be used whenever shared ownership is desired. It should
not be used when shared ownership is not desired; in some code it could be surprising --- or even
disastrous --- for an object to be shared between many owners. Try value_ptr (below) in such a
case.

boost::intrusive_ptr<T>:

intrusive_ptr is very similar to shared_ptr. They differ in that intrusive_ptr can only be
used to point to an object with an embedded reference count. Its use will be rare. Quoting from the
intrusive_ptr documentation: "As a general rule, if it isn't obvious whether intrusive_ptr
better fits your needs than shared_ptr, try a shared_ptr-based design first."

boost::weak_ptr<T>:

http://www.boost.org

weak_ptr is provided to give shared access with no ownership to an object which is managed
through a shared_ptr. Its correct use is fairly subtle, and it should rarely be needed.

edm::value_ptr<T>:

value_ptr implements sole ownership. Copying a value_ptr causes a copy of the pointed-to
object to be created. This makes value_ptr useful for managing class data members when the
shared ownership of shared_ptr is inappropriate.

Usage Guidelines

For local use in functions
Most often, objects which are local to functions should not be new'd. Thus, no pointer is needed:

void f() {
 SomeType s; // create it on the stack
 ... use the object s ...
} // s destroyed on function exit

The stack-based allocation of the object s assures that it will not be "leaked". The following code is never
appropriate:

void bad_f() {
 SomeType* s = new SomeType(...); // create it on the heap
 ... use the object pointed to by s ...
 delete s;
}

Even though this code calls delete on s, it is still poorly-written. If the code represented by the ellipsis
returns prematurely (either by calling return, or throwing an exception, or by calling something that
throws an exception) then the SomeType object pointed to by s will be leaked. Even if the code written
today does not have any chance of doing so, it is still poorly-written, because it is fragile. Changes made
at a later date may invalidate the statement that the code can not return prematurely, and every
modification to this code must be checked carefully to make sure that the object pointed to by s can not
be leaked.

Guideline #2
Prefer to put local objects on the stack.

Less often, heap-based allocation is needed. Some of these cases include:

1. Creation of an optional object, that is, an object that might be made, but also might not be made.

2. Creation of a pointer-to-base that will be initialized to point to some derived type

3. Creation of a very large object, one that would require an unreasonable amount of stack space.

In such cases, a pointer of some type is appropriate. In none of the cases listed above is a bare
pointer appropriate!

To choose the correct pointer type, consider the issues of ownership and the intended semantics of
copying. Ask the following questions:

1. Does it make sense to copy the pointer object?

If it does not, then use scoped_ptr. This will prevent your pointer from being copied accidentally.

2. If it makes sense to copy the pointer, should the copied pointer share control of the pointed-to
object?

If so, then use shared_ptr. (If your object already has an embedded reference count, then use
intrusive_ptr.)

3. If it makes sense to copy the pointer, should the act of copying transfer ownership to the new
pointer?

If so, then use auto_ptr. This is useful in functions that are "sources" (that is, factory functions), to
indicate that ownership of the created object that is returned by the call is given to the caller. It is
useful in functions that are "sinks" (such as edm::Event::put), to indicate that the called function
is taking control of the passed object.

4. If it makes sense to copy the pointer, should the copy manage its own copy of the pointed-to object?

If so, then use value_ptr. Copying a value_ptr creates a deep copy of the pointed-to object.

Guideline #3
Use a pointer type only when necessary. Choose the type of pointer after considering object ownership
and copying semantics.

For class data members
Please refer to EDM documentation for special issues regarding design of classes used as EDProducts.
Such classes are subject to restrictions imposed by the art Event Data Model and the persistency system.

It is very rarely correct to have a class contain a bare pointer as a data member. 1 This is because a bare
pointer does not convey any sense of ownership.

Most data members of a class should be held by value, rather than by pointer. But the same conditions as
above apply to data members; one may need a pointer because the data members is optional, or because
only the type of a base class is known, or because the member object is very large, or when using the
pimpl technique. 2 In such a case, a pointer data member is appropriate.

To choose the correct pointer type for a data member, consider the behavior of the copy constructor of the
class you are writing. The goal is to make the compiler-generated copy constructor be correct. Ask the
same questions regarding ownership and copying semantics as given above, and choose the pointer type
to use following those criteria. The benefits of having the compiler-generated copy constructor be correct
are several and important:

1. The compiler-generated copy constructor is often optimally efficient.

2. The resulting class is easier to maintain. If and when data members are added at some later date,
there is no chance of forgetting to update the copy constructor. Erroneous copy constructors often
lead to extremely subtle bugs.

3. If the compiler-generated copy constructor is correct, the compiler-generated assignment operator
and destructor are often correct. Thus there are two additional functions that do not need
maintenance under changes in the class, and which can not get "out of sync" with the design of the
class.

4. Using the compiler-generated copy constructor is self-documenting.

Summary
The following table summarizes the guidelines in this document. In all the below, T represents the type
pointed to by the given pointer type.

Pointer type Ownership
Copy

semantics Example uses

T* none shallow should be rare, especially as class data

shared_ptr<T> shared shallow wherever shared ownership is needed, but not
where shared ownership is inappropriate

auto_ptr<T> sole transfer return newly created object; pass ownership into
called function

scoped_ptr<T> sole not allowed object created locally in function; data member for
class that should not be copyable

value_ptr<T> sole deep "polymorphic" data member; keep pointer to base
class, but do not share the instance you point to
with others

1 An obvious exception is in smart pointer class templates themselves.
2 The pimpl technique, sometimes called the compiler firewall or letter-envelope

technique, can be used to make private members of a class truly invisible. See C++
Coding Standards, by Sutter and Alexandrescu, Item 43.

	Overview and Purpose
	Pointer Types
	Usage Guidelines
	For local use in functions
	For class data members

	Summary

