LBNE DAQ/Run Control Interface Specification
Kurt Biery & John Freeman (FNAL)

Erik Blaufuss & John Jacobsen (UMD)

Tim Nicholl’s (Sussex?)

Giles Barr (Oxford)

... (your name here)

This is the interface layer between Run Control and ArtDAQ. After some discussions, the ArtDAQ and Run control
system experts determined that an intermediate interface layer between the two systems would be the best design
for the 35ton DAQ system. This layer is mostly driven by the ArtDAQ architecture, where several concurrent
subcomponents are needed to readout individual data sources, all determined by the requested system configuration.
There is likely start-up-order dependencies among the DAQ subcomponents that are required. This “middle layer”
allows:
e Run Control to be somewhat ignorant of the details of a selected run configuration (number and location of
board readers, etc)
e The DAQ team to have a location to cleanly map between Run control commands and configurations for the
entire DAQ system and the commands and configurations portions needed by any one DAQ subcomponent,
including the number and location of each subcomponent.

It is expected that DAQ subcomponents should still report fine-level monitoring information to the Run Control system
as they start up, configure, run and terminate. This will allow for centralized monitoring by DAQ experts of DAQ
subcomponent states.

Open questions / issues are in red.

1. Name: needs a pithy name? For now we call it dagiface [feel free to rename/search/replace].
2. Definitions:
a. Run Control is also known as Ibnerc. Its command-line interface is Ibonecmd. The main control
program is known as Ibnecontrol.
3. External interface (to Run Control)
a. Control Interface:
i. State transition requests are made by components via XML-RPC
ii. dagiface should listen at some port for XML-RPC commands. Optionally, it can announce it's
location on the network by sending the following ZeroMQ message to Ibnecontrol on the control
server at port 5000:
{"type": "control",
"name": "artdaqg",
"synchronous": True,
"host": <host>,
"port": <port>}
Where <host> and <port> are the appropriate host (string; name or IP) and port name (int).
Announcing in this way eliminates the need for the operator to explicitly “control” the
component.
iii. RPC commands:
1. daqiface should implement/register the following XML-RPC functions:
a. state change (name, requested state, *args):
Introduce state change to the DAQ system.
“‘name” will be “artdaq” (or whatever is sent in 3.a.ii). “requested_state” will be

be one of “stop”, “start”, “recover”, “pause”, "resume”.

i. *argsis an optional set of key-value pairs of arguments and values
appropriate to the state transition. At the moment, only “starting” has
arguments, and they are:

{"run number": <number>,
"run config": <config name> <config id>}
If the state transition isn’t allowed, e.g. “running”->"recovering”, can the
C++ code in dagiface raise an exception here or should this return an
error?
b. state (name):
Return the overall state of the DAQ.
“‘name” will again be “artdaq”.
Return one of “stopping”, “stopped”, “pausing”, “paused”, “error”, *
“starting”, “running”.

recovering”,

b. Monitoring Interface

i. Ibnecontrol accepts messages sent in JSON format via ZeroMQ to port 5000. In addition to the
message type defined in 3.a.ii, quantities can be transmitted to Ibnecontrol in the following

format:

{"type": "moni",
"service": "artdaqg",

"t": "2013-11-05 15:06:12",
"varname": "event count",

"value": 12987115}
Note that structured values are OK:

{"type": "moni",

"service": "artdaqg",

"t": "2013-11-05 15:13:22",

"varname": "active subcomponents",

"value": ["event builder 1": {"state": "running",

"events processed": 139578},
a1
ii. When dagiface’s state changes, it should report the new state to run control, e.g.,
{"type": "moni",
"service": "artdaqg",
"t": "2013-11-05 15:06:12",
"varname": "state",
"value": "running"}
iii. When a subrun starts or stops, daqgiface should report the time, run number, and subrun:
{"type": "moni",
"service": "artdaqg",
"t": "2013-11-05 15:06:12",
"varname": "rundata",
"value": {"runnumber", 135987,
"subrun", 2,
"tstart": "2013-11-05 15:06:10.12389713"}}
(We may wish to add information to this message)
c. Logging Interface
i. Log messages (to be displayed to operators and/or archived) can also be sent to run control
the same way. In this case "varname" should be "log" and "value" should be the desired string.
Example:

{ "type" . "moni" ,

"service": "artdaqg",

"t": "2013-11-05 15:19:01",

"varname": "log",

"value": "Ack! Something really bad happened, I don't know what..."}

d. Alert Interface

[An alert interface for run control is planned but not yet implemented. The alerts may send
messages to email inboxes and/or mobile phones, and will be displayed on the Run Control
Web pages.]

4. |Internal interactions with ArtDAQ:
a. [04-Dec, KAB: unfortunately, I'm not completely clear on which state transitions we will make visible to
the operators. In some of our conversations, this has been suggested to be as simple as “start” and

“stop”. A more full-featured set might include “configure

” o« ” ” ” o«

, “start”, “pause”, “resume”, “stop”,

“shutdown”. It would be great to settle on these soon. To get started on this section, | will presume
the simple model (but truthfully, my preference would be something more verbose).]
b. when the DAQinterface layer receives the “start” command, it will

ii.
iii.
iv.
V.

Vi.

start all of the artdaq processes

tell the ConfigurationManager to generate the desired configuration files

send the "init" command to each of the artdaq processes, in the appropriate order

send the "start" command to each of the artdaq processes, in the appropriate order

if RC sends a "state" request at any time during this process, the DAQinterface layer will return
a state of "starting"

if an error is encountered in any of the individual steps, what should the DAQinterface layer do?
One proposal would be for it to simply stop and report a state of "error" to any "state" requests
from RC. RunControl could then send a "recover" request at some convenient time.

c. when the DAQinterface layer receives the Stop command, it will

iv.

send the "stop" command to each of the artdaq processes, in the appropriate order

send the "shutdown" command to each of the artdaq processes, in the appropriate order

if RC sends a "state" request at any time during this process, the DAQinterface layer will return
a state of "stopping"

if an error is encountered in any of the individual steps, what should the DAQinterface layer do?
One proposal would be for it to simply stop and report a state of "error" to any "state" requests
from RC. RunControl could then send a "Recover" request at some convenient time.

d. It would be great to discuss and define the choices that operators are allowed to make through the RC
GUI when configuring the system and starting runs. This should be folded into other parts of the
document, but I'll make some notes here until we have a chance to discuss this.

At a minimum, the user will need to choose a named configuration.

1. John and Kurt have tentatively discussed having RunControl query the
ConfigurationManager to obtain the list of available configurations and display those to
the user.

In the simplest model, RC would send the run number, configuration name, and configuration
ID in the “start” message.

A more flexible interface would allow the user to select which parts of the detector to include in
the run and the number of event builder nodes to use. These choices would be passed to the
DAQInterface layer, and it would start the appropriate number (and type) of BoardReaders and
number of EventBuilders based on the user’s choice.

e. Maybe it would be useful to list the options so we can all refer to them in our discussions:

Options for which operations are presented to the user
1. start, stop, and recover
2. start, stop, pause, resume, and recover

3. configure, start, stop, pause, resume, recover, and shutdown
other option(s)?
5. (Obviously, the trade-offs are simplicity vs. finer-grained control, and possibly less time
between runs if no reconfiguration is needed.)
ii. Options for what fraction of the configuration is specified by the user
1. the user picks a single named configuration and that specifies all of the system,

hardware, artdaq software, and art software parameters

2. the user specifies the parts of the detector to be included, the number of event builders
to run, whether to write the data to disk, and a single named configuration that specifies
the remaining parameters (hardware, artdaq software, and art software)

3. other option(s)

5. Project disposition:
a. dagqiface lives in the ArtDAQ software distribution and is built, installed and started (in the program

sense, not the state management sense) as part of same.

s

Please email john@mail.npxdesigns.com if you would like edit access to this document.

mailto:john@mail.npxdesigns.com

