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Motivation

• Training and test samples require additional observations 
(HST, spectroscopic, etc.), and it would nice to have a way to 
validate (at least roughly) the star/galaxy separation using DES 
data alone. 

• The idea is to use “regions” of DES data where the distributions 
of stars and galaxies are distinct. 

• Start with spatial over densities:  

• Galaxy clusters 

• Resolved stellar clusters 

• Could image using color or magnitude information 

• This method should be thought of as a rough cross-check, not 
as the final word on completeness
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Toy Example

• Assumptions: 

• Positive (signal) objects dependent on 
region 

• Distribution of negative (background) 
objects independent of region 

• Performance of the classifier is the 
independent of region 

• Leakage from the positive distribution 
into the negative distribution will 
depend on bin 

• The “True Positive Rate (TPR)” (aka, 
completeness) can be analytically 
derived from the observed classification

!3

equations for the two regions yields

(p1 � p2) = TPR⇥ (P1 � P2) (16)

(n1 � n2) = FNR⇥ (P1 � P2) (17)

or rearranging

TPR =
p1 � p2

P1 � P2
(18)

FNR =
n1 � n2

P1 � P2
(19)

(20)

remembering that TPR+FNR = 1 and defining �p = p1�p2 and �n = n1�n2

FNR =
�n

�n+�p

TPR =
�p

�n+�p

(21)

(22)

This provides us with a metric for evaluating the false negative rate, and
by extension the true positive rate, of the classifier based solely on the output
classification of objects in each region.

2.2 Confidence Intervals

Due to statistical fluctuations alone, the TPR derived from the data will not be
identical to the true TPR. For example, in cases where TPR 1 and the number
of instances in each sample is small, a statistical fluctuations in n1 and n2 can
lead to unphysical values of TPR > 1. These cases emphasize the usefulness of
being able to derive a confidence interval, or more specifically a lower limit, on
the value of the TPR.

The uncertainty on the number of events of a given classification in each
region can be estimated with a binomial distribution:

�pi = �ni =
p

✏(1� ✏)(pi + ni) =

r
pini

pi + ni
, (23)

where we have defined the measured e�ciency of the cut as ✏ = pi/(pi + ni).
To create a confidence interval for the TPR, generate 1x105 random values of
pi, ni and calculating the corresponding TPR. The resulting output distribution
is plotted in Figure 2 .

2.3 Caveats

The biggest issues could result from problems deblending, in which case the
negative source count distribution may not be constant of the regions. More
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TPR =
TP

P
= True Positive Rate (10)

FNR =
FN

P
= False Negative Rate (11)

TNR =
TN

N
= True Negative Rate (12)

FPR =
FP

N
= False Positive Rate (13)

2.1 Classifier Performance

A common metric for evaluating the intrinsic performance of a classifier is to plot
the TPR vs. the FPR, known as a receiver operating characteristic (ROC) curve.
On the other hand, optical survey astronomy generally assesses the performance
of a classifier through the resulting “completeness” and “purity” of the output
sample. The completeness is defined as the fraction of true galaxies that are
classified as galaxies, TP/P, and is thus generally comparable to the TPR.1 The
purity is defined as the fraction of objects classified as galaxies which are, in
reality, stars in other words, FP/(TP + FP). Of the quantities defined thus far,
the purity is the only one which dependends on both the number of positive
and negative instances in the sample. Thus, the purity depends on both the
performance of the classifier and the composition of the test sample (relative
number of postive to negative instances).

Historically, it seems that the performance of photometric star-galaxy classi-
fiers has been evaluated through additional observations with increased resolu-
tion or spectroscopy. However, additional observations are often costly, small in
scale, and biased relative to generic survey observations (either in object selec-
tion or observation quality). Thus, it becomes interesting to examine possible
ways to validate the performance of a classifier within the survey at large. This
type of validation is possible when an additional descriminating variable exists
in the data set that is not used in the training of the classifier. While certainly
not uniqe, perhaps the most obvious example of such a variable is the spatial
distribution of objects (e.g., localized over-densities of stars or galaxies).

Before diving into the full complexity of the data, it is useful to examine
a simple toy example (Figure 1). Imagine a toy case where a data set is di-
vided into two regions (these regions could be distinct spatially, in color-space,
magnitude-space, etc.) and the following assumptions apply:

1. The performance of the classifier is assumed to be the same in both regions.

2. The number of positive (signal) instances is assumed to vary between the
two regions.

1
This is association is not rigorous, since the word “completeness” also has conotations

regarding the detection e�ciency of the imaging (e.g., statistical magnitude limit, object

detection, deblending, etc.).
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Statistical Uncertainty
• The classification of objects in 

each region will be subject to 
statistical fluctuations 

• We would like to propagate 
this uncertainty into the 
derived TPR 

• Binomial errors on ni, pi 

• Derive uncertainty on TPR 
from MC 

• In addition to the best-fit TPR, 
set a 95% Confidence Level 
(C.L.) lower limit on the TPR
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Galaxy Clusters
• SVA1 gold catalog objects within 0.5 

deg of 11 redmapper clusters with >100 
members 

• Separate objects based on the modest 
star-galaxy classifier in SV-A1 

• Define regions: 

• region 1:  0 < alpha < 0.005 deg2 

• region 2: 0.20 < alpha < 0.205 deg2 

• Angular distributions look well 
behaved, so try to apply the formalism 
developed previously 

• Best-Fit TPR (completeness):  
   94.5% 

• Lower Limit on TPR (95% C.L.):  
   92.8%
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Region 1

Region 2



Alex Drlica-Wagner  |  SG Challenge

Conclusions and Caveats

• This method only incorporates statistical uncertainties. 

• De-blending is an issue!  

• If the we aren’t finding stars near the center of galaxy 
clusters, this will lead to an over-estimation of completeness 

• Dense stellar clusters are currently heavily impacted 

• Cluster selection: 

• It would be nice to have a selection of clusters that don’t rely 
on the analysis of the DES data (i.e., and ad hoc list rather 
than an a posteriori list from redmapper). 

• I’m in the process of writing a note to detail the formalism.
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