A SIMPLE STATISTICAL APPROACH FOR STAR-GALAXY SEPARATION
Basilio Santiago and the DES-Brazil group

1. USING SPREAD MODEL ONLY

This text presents a simple prescription to separate stars from galaxies using spread-
model values and their associated uncertainties. The prescription may be extended to include
other measurable quantities.

Let a source have a spread model measurement s,, in some passband, with an associated
uncertainty o,. We may ask: what is the probability that this measured value corresponds
to a true spread-model value is s;, P(s¢|$m,0s)? If the error distribution in spread model
is a Gaussian, this probability (not yet properly normalized) is P(s¢|Sm,0s) = exp[—(Sm —
s¢)?/207).

We may also know a prior: the probability that a randomly selected source with true
spread-model s; is a galaxy, Pg(s¢). This probability function may come from a sample of
bright sources with well measured spread-model and with HST imaging available, so that we
know which objects are stars and which ones are galaxies. Alternatively, we may consider the
information we have on bright sources, for which o5, ~ 0 — s,, ~ s;. We notice that bright
sources form two distinct locci in s,,. Therefore, we may approximate Pg(s;) as

Pa(st) = H(st = s0), (1)

where H(z) is the Heavyside or step function. H(z) =1 for > 0 and H(x) = 0 for x < 0.
In other words, at the bright end we may find some value of s; = sy which nicely and cleanly
separates actual point sources from galaxies. For DES, one often uses so = 0.002 or s¢o = 0.003.

We may also write the probability that a randomly picked source with spread model s,
is a point source:

Ps(st) =1— Pg(sy) =1—H(s¢ — so) = H(sg — s¢), (2)

Assuming that we know the probability distribution Pg(s:), we may then compute the
probability that a source with measured s,, + o, is a galaxy with true spread model s;. This
is simply

P(G, 5¢|8m,05) = Pa(ss)exp[—(sm — 5¢)%/202]

If we now integrate over all s; values, we simply have the probability that the source is
a galaxy, given the observed spread model values and uncertainty:

J70 Pa(se) expl—(sm — s¢)?/202]ds,
P(G|Sm, 0’5) = f_oooo exp[—(sm — St)2/20-§]d3t

Using the prior knowledge about Pg(s;) from sources at the bright end and approximating
it by a step function as in eq. (1) we then have

: (3)



fszo exp|—(8m — 8¢)%/202]ds;
foooo exp[—(8m — 5¢)2/202]ds;’

P(G|sm,0s) =

After some algebra we can prove that

L+ erf[(sm — s0)/(V205)]
5 ;

P(G|sm,05) =

where er f(x) is the error function. Notice that if

(Sm — 50)/0s >> 1 = erf[(sm — 50)/(V204)] ~ 1 — P(Glsm,05) =1 —= P(S|$m,05) =0

as expected. In the other extreme, if

(S — 50)/0s << —1 = erf[(sm — 50)/(V205)] ~ =1 = P(G|$m,0s) =0 =1— P(S|5,05)

Again, this is just as expected, since spread-model values much smaller than sg are
expected to occur for point sources.

Also, if s, = so, then erf[(s,m — s0)/(vV205)] = erf(0) = 0 — P(G|sp,05) =
P(S|$m,0s) = 0.5. This last condition is just expected once more. By design, we use sg
as a discriminator between what is a galaxy and what is not. So, at this limiting value, a
source is not clearly defined as either a galaxy or a point source.

Thus, if one wants to tag objects either as a galaxy or as point source based on what is
the larger probability, eq. 5 above is exactly the same as simply cutting the sample at s,,, = s¢:
if s, > sg — galaxy; if s, < so — point source.

But one may use eq. 5 to determine a probability of each source being a galaxy or a point
source, carrying out this probability throughout any future analysis. Alternatively, one may
also define a galaxy sample using some other criterion than simply P(G|sy,, 0s) > P(S|Sm, 0s).
For instance, one may draw a more reliable galaxy sample using a criterion such as

P(G|$pm, 05) = 2P(S|sm, 05) = 0.666

This means that erf[(s,, — s0)/(v/20s)] = 0.332. Looking at a table for erf(x), this
corresponds to z = 0.31 — (s, — s0)/(0s) = 0.438 — s,,, = 0.43805 + s¢.

In other words, one may optimally select a sample of galaxies based on a cut in the
probability of objects being galaxies rather than on a cut in spread-model or on a combination of
parameters. One may also estimate what is the probability cut-off of any proposed prescription
for selecting galaxies. For instance, suppose we select our galaxies by using s, > sog — 305 —
(sm — s0)/(0s) > —3, as has been recently proposed. In this case, eq. 5 gives

_ lterf(-212)

P(Glsp, 05) = : ~0

Such a cut-off will certainly increase completeness of the galaxy sample, but at the expense
of essentially bringing any source, however small its probability of being a galaxy, into this
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sample. This means a high risk of sacrificing the sample purity. Of course, if one is sure that
at a certain magnitude (or S/N) level, galaxies by far dominate the whole sample, purity may
not be a serious issue. This may, in fact, be the case at some very faint flux level.

2. INCORPORATING APPARENT MAGNITUDES

We may in fact incorporate apparent magnitude as an extra parameter in estimating the
probability that some source is a galaxy. We may do it in a very similar way as we did for
spread model, namely by using something analogous to eq. 3

ffooo Pg(my) exp[—(mmy, —my)? /202 |dm;
P(Gmp,om) = = N
I~ expl—(mpy, —my)? /202, Jdmy
where m,,, = 0, are some magnitude measurement and its associated error, m; is the true

(error free) magnitude in the same filter, and Pg(m) is the probability that some randomly
picked source of magnitude m is a galaxy. This may be estimated a priori by:

: (6)

Pa(m,1,b) = 5~ (m)‘]\f](\f";)(m, i Ps(m, 1,b), (7)

where Ng(m) and Ng(m,l,b) are the expected mean number counts of galaxies and point
sources per unit solid angle. For galaxies, these counts are available from deep photometry in
reasonably large areas taken with similar filters. For stars, it is perhaps best to use a Galactic
model. Notice that since stars dominate the counts of point sources and their distribution
varies as a function of Galactic coordinates, the probability distribution of finding a galaxy as
a function of magnitude depends on direction on the sky. The distribution of QSOs may also
be taken from deep surveys.

Considering that Pg(m,[,b) as given by eq. 7 is not even an analytical expression, eq.
6 cannot be easily integrated to yield P(G|m,o.,,[,b). But it can be computed numerically
given the curves Ng(m) and Ng(m,1,b).

With apparent magnitudes incorporated, a new estimate of the probability that a source
is a galaxy would be

P(G|Sm7087m7 Um,l, b) 0.8 P(G|8m7gs>P(G|m7 O‘m,l,b), (8)

where the first factor in eq. 8 above is given by eq. 5 and the second factor is given by eq. 6
with integrand given by eq. 7. Expression 8 is stating that the effect of spread model on the
probability of an object being a galaxy is independent from the effect of the source’s brightness.

One has to be carefull in dealing with the normalization of this new probability though.
The reason is that we can write (see eqs. 2, 3 and 4)

P(S|sm,0s) + P(Glsm,05) =1
and (see eq. 6 and 7),

P(S|m,om) + P(Glm,om) =1



In other words, both factors add to one individually. To bypass this, we may com-
pute P(G|sm,0s,m,0m,1,b) as an equality in eq. 8, then compute P(S|s,, s, m,om,l,b) =
P(S|sm,0s)P(S|m,om,l,b) in a identical way and renormalize both at the end, so that they
add up to 1.

3. COMPUTING THE PROBABILITY ESTIMATES

The DES portal QA Coadd tool is likely the ideal place to compute these probability es-
timates for each source in a DES catalog. It efficiently deals with DES catalog data containing
positions, spread model and magnitudes and their uncertainties. Its modules already incorpo-
rate model number counts for stars (from AddStar on a tile by tile basis) and for galaxies (in
fact, these curves are available in Quick Reduce and were taken from Capak et al (2007, ApJS,
172, 99), but can be easily transferred to QA Coadd). Thus, all the necessary quantities to
compute P(G|$p, 05, m,0m,1,b) and P(S|sy,, 0s,m, 0m, [, b) using the prescription above are
available.

As a final remark, colour information can be also factored into these probabilities. One
simple way to do it is to use galaxy and stellar number counts in the (g — r) vs. (r — i) plane.
We can use stellar population synthesis from AddStar and observed galaxy counts in colour-
colour space to determine the prior probability that some randomly selected source is a galaxy
or a star, given its colours. The probability that the source is a galaxy based on a Gaussian
distribution of measured colour uncertainties and on the prior probabilities over colour space
should then be easily determined, in an analogous way to what was done with magnitudes.
The colour based probability may then be combined with those based on spread model and
magnitudes and the final probabilities using all parameters can then be renormalized to unity
as described in the end of the previous section.

4. INITIAL IMPLEMENTATION OF THE METHOD

We have implemented the algorithms described above using Python. We used the S/G
challenge test file, containing about 71k sources from the DECam COSMOS field in about a 1
sq deg region. See details at the RedMine wiki page

https : //cdcvs. fnal.gov/redmine/projects/des — sci -
vemfzcatzon/wzkz/SG separation_challenge_details

The prior assumptions about the distribution of stars as a function of magnitude and
colours were taken from AddStar runs of tiles in and around the COSMOS field. The galaxy
distribution as a function of magnitudes was assumed to be that from Capak et al (2007, ApJS,
172, 99). For the galaxy distribution in colour-colour space ((g-r) vs. (r-i)) we assumed, for
simplicity, that it is uniform over the range covered by the stellar locus.

The code sgsep.py computes probabilities of a source being either a galaxy or a point
source based on spread model alone, on the magnitude alone and on the colours alone. The 6
probability values are then output to an ascii file.

Figure 1 shows all sources
in the S/G Challenge test file in the spread_model_i vs. mag_auto_i plane. The points are
colour coded according to the probability of a source being a galaxy based only on spread
model, p,y(s.,), as given by eq. 5 and assuming so = 0.002. The colours are as follows: cyan:
pg < 0.2; blue: 0.2 < p; < 0.4; green: 0.4 < py < 0.6; red: 0.6 < p; < 0.8; black: p, > 0.8.
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There is a clear stratification where higher s,, values correspond to higher probabilities of the
source to be a galaxy. The separation is very clear cut at bright magnitudes (i.e., either very
small or very large py(sy,) values) because of the very small uncertainties in spread model at
high S/N levels. At fainter magnitudes the S/G separation is not as simple, with many objects
with 0.2 < py(sm) < 0.8, attesting the increasing difficulty in separating sources and the larger
uncertainties in the measured values of spread model.
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Figure 1: Spread model (s,,) plotted against magnitude, both in i-band. The different
colours correspond to different probabilities of the source being a galaxy. Cyan: py < 0.2; blue:
0.2 <py <0.4; green: 0.4 < py <0.6; red: 0.6 < py < 0.8; black: py > 0.8

Figure 2 shows the same plot as in Figure 1, but sources are colour coded according to the
galaxy probabilities exclusively based on the measured magnitude and its uncertainties, and
on the assumed priors for the magnitude distributions, Ng(m) and Ng(m,[,b), as given by eq.
7 above. We again used the i band in this experiment, i.e. we set m = i. The colour code is the
same as in the previous figure. Again, the stratification is clear, showing that the algorithm has
been correctly implemented. Higher py(i) probabilities are assigned to fainter sources, since
galaxies increasingly dominate the source number counts as a function of magnitude.
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Figure 2: Same as in Figure 1, but now the sources are colour coded according to their
magnitude based probabilities, py(1).

As a final check to our algorithm, in Figure 3 we show the sources from the S/G Challenge
test file distributed on the (¢ — 7).vs.(r — i) plane. They are colour coded by the galaxy
probabilities based on the colours alone, py(g — 7,7 — ). As mentioned earlier, the prior
distribution of stars on this plane was built using AddStar simulations made on the same region
of the sky where the data come from. The galaxies were assumed to be uniformly distributed
over the colour-colour plane. Based on these distributions we compute prior probabilities of
a source being a galaxy or a star, analogously to equation (7) above. In fact, the algorithm
to compute py(g — 7,7 — i) and ps(g — r,r — i) is formally identical to the one used for the
magnitudes and which was presented earlier. The basic difference is that we now integrate the
Gaussian terms over a 2D (colour-colour) plane rather than over a single (magnitude) axis, as
we did in equation (6).
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Figure 3: Sources on the (g — ) vs; (r —1i) plane colour coded according to their colour-
based probability of being a galaxy, py(g —r,m —1).

Figure 3 again shows that our code was correctly implemented. The py(g—r,r —1%) values
are clearly smaller in regions of the (¢ — 7).vs.(r — i) plane that lie closer to the stellar locus,
as expected.

5. S/G CHALLENGE, FIRST RESULTS

We now apply the probability estimates we have to the S/G Challenge test sample and
measure completeness and purity curves for stars and galaxies. Having 3 estimates of the
probability that each source is a galaxy, py(sm),py(¢),pg(g — 7,7 — i), we need to combine
them.

Our first attempt is to use their product

by = pg(sm) pg(i) pg(g — 7T, —1). 9)

We do the same for the stars and renormalize the two probabilities so that p, + ps, = 1.
Using the parameter mu_class_acs described in the S/G Challenge web page, we then build
Figure 4. It shows galaxy completeness plotted against galaxy purity for the entire test sample.
No magnitude cut was applied to the sample prior to constructing the curves. As suggested in
the same wiki page, we did not include objects with mu_class_acs = 3 or mu_class_acs = —999
in our completeness and purity estimates. Hence, for a given p, j;n, cut-off value, our galaxy
completeness estimate is



N(pg > pg,iim & mu_class_acs = 1)

Cptg(pg,lim) = ) (10)

N(mu_class-acs = 1)

A similar expressions holds for the stellar completeness. As for purity we get

N(pg > pg,1im & mu_class_acs = 1)
N(pg > pgiim & |mu_class_acs| < 3)’

purg(pg.tim) = (11)

And again a similar expression is used for the stars.

The solid line in Figure 4 shows the results for our Bayesian classifier. Larger completeness
of course means lower p, cut off values, at the expense of decreasing purity. The dashed shows
the same curve based on class_star_i, whereas the dotted one is the result of using simple
cuts in spread_model_i. These curves follow the same definition of completeness and purity as
presented above, only the parameter used and its associated cut-off values changed.
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Figure 4: Galaxy completeness values plotted against purity. The solid line shows the
results for our combined probability estimator. The dashed (dotted) line is based on class star

(spread model). Completeness and purity were computed according to eqs. 10 and 11 in the
text.

It is clear from Figure 4 that the Bayesian estimator proposed here simultaneously yields
both a complete and pure galaxy sample. At 98% purity, for instance, we have a galaxy sample
which is ~ 91% complete. If we sacrifice purity by just 1%, we increase completeness to 98%.
The improvement over a simple class_star or spread_model criterion is visible in the figure.

In Figure 5 we show our results for the stars. The symbols are the same as in the previous
figure. Again, we did not cut the sample at any S/N level. With the proposed estimator we
now have much lower simultaneous completeness and purity values for the stars. Still, our
estimator achieves higher simultaneous levels than the two classical S/G separators. We can



extract a ~ 90% pure stellar sample with a completeness level of ~ 60%. One caveat that
affects our method is that the ps(s,,) probability is estimated using a cut in s,, rather than
|sm| (see description of the method). This may affect the purity of the stellar sample. We
are planning to improve on this probability estimator, in order to restrict it the actual stellar
range in s, which is supposedly symmetric around s,, = 0.
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Figure 5: Same as in Figure 4, but now showing results for the stars.

Since the results for the stars are not as good as for galaxies, we have also explored other
combinations of the stellar probabilities based on spread-model, magnitude and col-col space
than the product as given by eq. 9 applied to stars. In Figure 6 we show these results. We tried
all combinations involving ps(s.,), ps(4), and ps(g — r,r — ). In all cases p, was consistently
redefined so as to make use of the same estimator as the used for the stars. Unfortunately,
considering the 3 stellar probability terms individually or in pairs does not improve our capacity
to draw a more complete and purer stellar sample than using the full combination of all 3 terms.
Figure 6 also shows that use of the colour information is producing an artificial discontinuity
in the completeness and purity values and is adding little extra information to help separate
stars from galaxies.
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Figure 6: Same as in Figure 5, but now showing results for stellar probabilities based on
different combinations of ps(sm), ps(i), and ps(g — r,r — i), as follows: solid black line: ps =
Ps(Sm) ps(i) ps(g —r,r—1) (same as in previous Figure); solid green line: ps = ps(Sm) ps(g —
r,r—1); dotted green line: ps = ps(Sm) ps(i); dashed green line: ps = ps(i) ps(g—r,7—1); solid
red line: ps = ps(g —r,r —1); dotted red line: ps = ps(Sm); dashed red line: ps = ps(i). In all
7 cases, the stellar probabilities were re-normalized using the condition ps + p, = 1, where py
was also re-computed using the same combination of probability terms as the stars. The curves
based on class star and spread model are again shown here for reference.

As a final test, we cut the stellar sample at i < 23 and rebuild the completeness vs. purity
curve. This is shown in Figure 7, for our method, as well as for class star and spread model, as
the curves that lie above the ones repeated from Figure 5. There is a clear improvement in the
completeness and purity levels achieved for all classifiers. In particular, the method presented
here now provides 95% purity at about 92% completeness for the stars brighter than i = 23.
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Figure 7: Stellar completeness values plotted against purity. The solid line shows the
results for our combined probability estimator. The dashed (dotted) line is based on class star
(spread model). The lower curves are the same as in Figure 5, where no cut in magnitude
was applied. The curves lying closer to the top right of the figure correspond to sources cut at
1= 23.

6. FINAL REMARKS, FOR NOW...

QSO probabilities may be incorporated into our method in a straightforward manner,
basically requiring only that prior distributions of QSOs as a function of magnitude and in
colour-colour space are provided. The probability that some source with measured spread
model, magnitude and colours, along with their uncertainties, is a QSO would then be com-
puted as

b = ps(sm) pQ(i> pQ(g -nr—- 7:)7 (12)

where px (i) and px(g — r,r — 1) for X = g,s,Q would be computed a priori using
expressions similar to eq. 7, but with the 3 source counts in the denominator.
And the re-normalization of the probabilities would then just be

Py +Dst+pg =1

Another improvement that can be made is to incorporate probability estimates for point
sources and galaxies based on the value of class star and its associated uncertainty, in a similar
way as described in section 1 for spread model. The method can also be further extended to
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use extra dimensions in colour-space, magnitude space as well as spread model and class stars
estimated with different filters.
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