Changing LArSoft
Framework to CD ART

Brian Rebel
September 2010

Why Change!?

® The major reason to change is that we get on the same page with future
intensity frontier experiments - makes it easier for postdocs, students to
transition from one to another

® Also gain support from Computing Division in upkeep of framework, how
it plays with new releases from ROOT etc

® The new framework has several other desirable features
® Designed for multithread running, should we ever need it
® Better type safety and memory management
® Desirable features such as configurable services (more later)

® Ability to navigate the output ROOT file and draw distributions from data members

® |nformation on using the new framework is available at https://
cdcvs.fnal.gov/redmine/projects/larsoftsvn/wiki/

Wednesday, September 1, 2010

https://cdcvs.fnal.gov/redmine/projects/larsoftsvn/wiki/
https://cdcvs.fnal.gov/redmine/projects/larsoftsvn/wiki/
https://cdcvs.fnal.gov/redmine/projects/larsoftsvn/wiki/
https://cdcvs.fnal.gov/redmine/projects/larsoftsvn/wiki/

Basic Concepts

The namespace edm is short for "Event Data Model". It is the namespace that contains the handles to both information stored in an
event and configurations for jobs. Objects that are stored in an event are collectively known as data products. They can either be
added to an event using an edm: :EDProducer derived module or they can be retrieved and operated on using an edm::EDAnalyzer
module. Once an object has been stored in the event, its data cannot be altered.

edm::EDProducer

This is a type of module that makes data products and stores them in the edm::Event. The module takes an edm::ParameterSet in the
constructor and uses that to configure that module. The user must supply the implementation for the edm::EDProducer::produce()
method to create and store data products.

edm::EDAnalyzer

This is a type of module that analyzes data products but cannot write them in an edm::Event. The module takes an
edm::ParameterSet in the constructor and uses that to configure that module. The user must supply the implementation for the
edm: :EDProducer::analyze() method to analyze data products.

edm::Event

The edm::Event is the primary way to access products made by EDProducer type modules. The accessing is done by creating a
It also provide the user with information about an event such as the run, event number, etc through methods like
edm::Event::run()

The edm::Event can also be used to access products by asking it to return an edm::Handle.

Wednesday, September 1, 2010

Basic Concepts

edm::Handle

An edm::Handle is what is returned to a Module when a data product is requested. The request can either be from a edm::EDProducer
that is attempting to get objects stored in a previous reconstruction or analysis step, or it can be from a edm::EDAnalyzer that is
attempting to do some analysis task using the information in the object. For example, to get the data product mp::MyProd from the
event, one should do

1 edm: :Handle< std::vector<mp::MyProd> > mplistHandle;
2 evt.getByLabel ("moduleprocesslabel” ,mplistHandle);

where evt is an object of type edm: :Event discussed below. The edm::Event::getByLabel method takes two arguments, the first is the
name of the process associated with the module that produced the list of mp::MyProd objects, and the second is the edm::Handle that
is to be associated to the list.

edm::Handles look like a pointer in the code in that the data members of the object being handled are accessed using the "->". For
example, to get the size of the list one can do

1 mplistHandle->size();

edm::ParameterSet

This object keeps track of which parameters are to be set by the user at run time for a module or edm: :Service. It can interpret
several data types including

beol

int

unsigned int
std::vector<int>
std::vector<unsigned int>
std::string
std::vector<std::string>
double
std::vector<double>

Other types are available, but the above list should serve almost all a user's needs.

Wednesday, September 1, 2010

Basic Concepts

edm::Service

The edm::Service is a templated object that behaves like a singleton, except that it is owned and managed by the framework. A
service can be used within any module. Services can be configured using the job configuration file. A typical example of the use of a
service is the detector Geometry. The Geometry is needed in just about every module, but you don't want to keep making instances of
the Geometry. Additionally, the different detectors may have to set different parameter values that should be handled in the job
configuration.

edm::TFileService

This is 2 specialized service that connects up to the file where histograms made by modules are to be stored. It provides a mechanism
for making TObjects to be stored in that file and managing the memory for those objects.

Messagelogger and MessageService

The Messagelogger provides several levels of messages that can be used to print information to an output log. The levels most likely
to be useful are edm::LogDebug, edm::Loginfo, edm::LogWarning and edm::LogError. These are listed in order of severity. The
MessageService can be configured to set the number of messages printed and to send each class of message to a different output
stream.

It can be used as follows:

1 if(x > 2) edm::LogWarning("XTooBig") << "x = " << x << " is too big";

edm::Exception

The edm: :Exception can be used to cause the framework to end a job gracefully if some predetermined bad thing happens. The use of
the edm: :Exception can be configured to skip 2 module, or skip to the next event, run, etc. Different exception classes can be set to
do different things.

edm::Exception can be used as follows:

1 if(x > 2) throw edm::Exception("XTooBig") << "x = " << x << " is too big";

Wednesday, September 1, 2010

Basic Concepts

edm::Ptr<T> and edm::PtrVector<T>

The edm::Ptr<T> is a template class that acts like a ROOT TRef. It provides a linkage between objects written into different areas of
the event (and output file). For example, the recob::Wire object holds an edm::Ptr<raw::RawDigit> pointing to the raw::RawDigit it
corresponds too. The edm::Ptr<T> behaves like a pointer (ie you access the methods of the T using the "->"). It also has functionality
to return the actual pointer to the object in question using edm::Ptr<T>::get() or to check if the edm::Ptr<T> is pointing to a
legitimate object using edm: :Ptr<T>::isNull().

An edm::PtrVector<T> is a vector of edm::Ptr<T> objects. It provides the basic functionality you would expect from a std::vector,
including iterators, size(), begin() and end() methods. It is useful when storing the connections of many objects of the same type in
an object, for example recob::Hits in a recob::Cluster.

Wednesday, September 1, 2010

Status of the Switch

® The following packages have been switched over:

® These are the packages necessary to test the simulation chain

® Have successfully run jobs to produce events from GENIE, CRY and Single
Particle simulations

® Comparisons of output for several modules in next slides

Wednesday, September 1, 2010

Making the Switch

Converting Data Objects from FMWK

The main difference between FMWK and the CD framework is that the CD framework does not save TObjects so that data objects do
not inherit from TObject. Thus, the main difference between the FMWK objects and the CD framework objects is that in the latter
framework the definition and implementation files do not have the following:

in a .h file remove

#include "TObject.h”

: public TObject

ClassDef (ObjName, 1)
in a .cxx file remove

ClassImp(ObjiName)

® Notice that the majority of data objects have been converted in RecoBase,
RawData, SimulationBase, Simulation and LArG4

® Have to make 2 additional files to register objects written to file, details on
the wiki

Wednesday, September 1, 2010

Making the Switch

Converting a Module from FMWK

It is very straight forward to convert a module from the FMWK framework into the CD developed framework.
There are only a few easy steps to doing the conversion, as illustrated using the DriftElectrons module.

The .h file must be changed so that the module inherits from the proper type of edm module and the Update method must be
removed.

In the .cxx file the line calling the macro to declare a module is removed and of course the proper header files must be included. The
Update method must be removed and the parameters are set using the edm::ParameterSet passed into the constructor. The
produces() method of the base edm::EDProducer must be called with the type of object(s) to be stored in the event. The last major
change is how objects from previous modules are gotten out of the edm::Event, as might be expected.

A new file, the _plugin.cc file is needed to call the macro dedaring the module to the framework.

® An example is on the wiki

Wednesday, September 1, 2010

Comparing Electron Drift

10° : @ ' T - "
10°F 1 O ot j
10t} w a1 FMWK |
10°f L ©10°F CD 1
10°f 1 ¥+
10} 1 10%} X
be 04 02 0 02 04 06 10¢ .
x diffusion (cm)]
10°} 9 1 g = 1 4
| 100 200 300 400
10°F 1
channel
10°} 1
10°f i ® Produced 500 single 6 GeV muons with each
1105? 1 version of the software
3 1
1
05 Oydiﬁusion%'gm) ® Made several sanity check plots to ensure that
- 1 the two versions of the software were doing
10°k - the same thing
10°F 1
10°F i ® Plots to left show diffusion in each direction
10°F 1
1‘1“ 1 @ Plot above shows number of electrons created

05 0 0.5 for each channel
z diffusion (cm)

Wednesday, September 1, 2010

Comparing Output of LArG4
- FMWK —

§ ® Similar number of voxels created b
. CD Framework Y

each version

; |1 ® Same distribution of energy/voxel

101 N :
Q0~"7000 2000 3000 4000 5000
voxels in event 210°Fp

e

S -
3l
10°0
10}
10°F
10

5 S 1 || R %)
0 02 04 06 08
energy (GeV)

Wednesday, September 1, 2010

DetSim Comparison

T 1 T T T L T T T

® z | S () B =
0 FMWK 2
Q. of | 208" .
@ 0.2 CD Framework] @ |
e E g X 06l b
5 1 5,
S-0.2] S |
2 S 0.2 -
— s) E
-04 | L | 3l S P N B
0 02 04 06 % 01 02 03 04
t (ns) t (ns)
go.os___..,
Q0.04 +4 ® The response files for the different
§0.031 H planes and electronics are identical
g 0.02 1 ® Not surprising as they come from the
© 0.01 5 same ROOT file
5 4
O Of\ :
Ll . el N ey SN g fe i g 2y TX103
0 50 100 150 200
t (ns)

Wednesday, September 1, 2010

DetSim Comparison

- —_
2 G vz o)

lm-

ElectronicsxCollection
= L

0 1000

2000

3000
ticks

3000
2000}

1000}

Po— PR

T R

5 10
Noise (ADC)

|

ElectronicsxInduction

0 1000 2000

4000
ticks

3000

FFT Convolution of the electronics
with the different plane response files
is also identical, at least for the ticks
that actually matter and are not just

padding of a vector

The noise distributions are also the

same

Wednesday, September 1, 2010

DetSim Comparison

sol—] MR e B R o T PR T B o B o e R
- FMWK Bl CD Framewdrk
sC- -
- L
] L , w[w
B Y™ Pty h
sE- |
R ooo::ﬁ:&)tzloo 700 600 1800 2000 i 1 | L o
0 500 1000 1500 2000
= |
20:— = Wire #105 (Raw) tdc
= FMWK
18— - -
z ICD Framework _
“E 201 -
’; K : Z
e ' ﬂﬂMﬂM\ A Y 10F 2
R R BT j :
s OWW | AR Arwf o [

0 500 1000 1500 _ 2000
tdc
® Signal shapes are the same for FMWK and CD framework produced tracks

Wednesday, September 1, 2010

Next Steps

® New svn repository has been started with the code based on the new
framework

® The new code base will be installed in blue arc areas used for submission to the
FermiGrid (one area for each LAr experiment)

e Convert EventDisplayBase and EventDisplay to work in the new framework
(likely me)

® Add functionality to update the configuration interactively, as you can do in the
event display now (CD person)

® Setup the build system to acknowledge private and public releases (me and CD
person)

® Get some early adopters to volunteer to convert their packages now (prefer
those whose packages are early in the reco chain)

® Set a deadline for turning off the CVS

® Schedule a workshop for teaching average user how to use the new framework
- propose Oct 7,2010.

Wednesday, September 1, 2010

