
DRAFT—Specification of the Fermilab
Hierarchical Configuration

Language—DRAFT
Marc Paterno

Randolph J. Herber
draft 4

Contents

1 Introduction 1

2 Preprocessing 2

3 Configuration language syntax 3

4 Configuration language semantics 12

A Differences between JSON and FCL 13

B Processing notes for URI inclusion 14

Index 15

1 Introduction

1.1 Purpose of this document

This document provides the formal specification for the Fermilab Hierarchical Configu-
ration Language, FHiCL. It uses extended Backus-Naur format (EBNF) to describe the
language grammar. The EBNF is presented as “railroad” diagrams. For purposes of
pronunciation, the acronym rhythms with “fickle.”

1.2 Notation used in this document

Any nonterminal is formatted in a square box, like:

- nonterminal -

1



2 draft 4

Any terminal text is formatted in a box with rounded corners, like:

- terminal
�� �
-

Arrows are used to show the direction in which diagrams should be read.

2 Preprocessing

Conceptually, preprocessing is a separate processing step which occurs before the
tokenization step and which may be and probably will be implemented in a separate
program.

preprocessorlines

- #
���
�

�- whitespace

�


- include

�� �
- whitespace �

�

�- "
���
- urifragment

�� �
- "
���
�


�
��

�- whitespace

�



-

Preprocessor lines are syntactically hash comments in the FHiCL. When discovered,
the processor line will be copied to the output and then followed by the contents of
the urifragment data entity. Inclusions may be nested to a minimum depth of 10. If
there exists a FHiCL shell environment variable, which is a comma separated list of URI
headers, then a URL will be formed with each URI header from left to right concatenated
with a ‘/’ (if the fragment does not start already with a ‘/’ and the urifragment. The first
successful URL will be used. If no URL is successful, then the preprocessor line produces
no output and no error indications. If there does not exist a FHiCL shell environment
variable, then the urifragment will be interpreted as a file name relative to the current
working directory if it does not begin with a ‘/’ and as an absolute file name if it does
begin with a ‘/’.



DRAFT—Specification of the FHiCL—DRAFT 3

3 Configuration language syntax

3.1 Encodings

The input will be encoded in ASCII, a seven bit code. In eight-bit bytes, the high-order bit
will be zero. In strings, all 256 eight-bit codes may be presented using ASCII characters.
A pretty printer program may represent non-printable bytes by octal or hexadecimal
escape sequences. The using application is responsible for recognizing the format of such
texts as binary data or wide character texts.

3.2 Tokenization

Conceptually, tokenization is done by selecting the token type name and string as the
first occurring longest match in the following list of patterns. All patterns are anchored at
the beginning of the remaining text. All whitespace, hashcomments and doublesolidus-
comments are discarded as soon as they are recognized. The token type name and string
are placed in a tuple. A vector of tuples is formed.

The FHiCL is whitespace delimited and is not line oriented, except for the hascom-
ments and doublesoliduscomments.

There are seven keyword tokens: true, false, infinity, PROLOG, END, nil and
null.

The keywords nil and null will be mapped internally to a single appropriate value
for the implementation language.

N.B., leading and trailing zeroes on numeric values are considered significant and are
preserved by the language.

If an error token is recognized, then the input is invalid.

A list of sub patterns to simplify the main list of type names and patterns:



4 draft 4

octaldigit

- 0
���
�

�- 1
���
�- 2
���
�- 3
���
�- 4
���
�- 5
���
�- 6
���
�- 7
���


�















-

nonzerodigit

- 1
���
�

�- 2
���
�- 3
���
�- 4
���
�- 5
���
�- 6
���
�- 7
���
�- 8
���
�- 9
���


�

















-

digit

- 0
���
�

�- nonzerodigit
�� �


�



-



DRAFT—Specification of the FHiCL—DRAFT 5

hexdigit

- digit�
�- a

���
�- b
���
�- c
���
�- d
���
�- e
���
�- f
���
�- A
���
�- B
���
�- C
���
�- D
���
�- E
���
�- F
���


�

























-

sign

- -
���
�

�- +
���


�



-

optionalsign

�
�- sign

�



-

exponent

- E
���
�

�- e
���


�


- optionalsign - digit�

�- digit - digit

�- digit - digit - digit

�





-



6 draft 4

???
�� �


The list of type names and patterns:

whitespace

�
� -

���
�
�- tab

�� �
�- newline
�� �
�- newpage
�� �


�







�



-

hashcomments

- #
���
�

�any-character, except newline
�� �
�

�



-

doublesoliduscomments

- //
�� �
�

�any-character, except newline
�� �
�

�



-

true

- true
�� �
-

false

- false
�� �
-

nil

- nil
�� �
-



DRAFT—Specification of the FHiCL—DRAFT 7

nil

- null
�� �
-

number

- optionalsign - infinity
�� �
-

number

- optionalsign - digit�
�

�



�
�- .

���
�
�digit �

�



�



�
�- exponent

�



-

number

- optionalsign - .
���
- digit�

�
�



�
�- exponent

�



-

number

- sign - digit�
�

�



-

ordinal

- digit�
�

�



-

name

- alpha�
�-���


�



�
� alpha ��

�digit �

����
�
�





�



-



8 draft 4

string

- "
���
�

� any character except a " or reverse solidus
�� �
��

� "
���
��

� \
���
��r
���
��n
���
��t
���
��v
���
��f
���
��b
���
��0
���
��octaldigit � octaldigit � octaldigit �

�hexdigit � hexdigit � x
���
��

�X
���
�

�



�





















\
���
�

�



�


- "

���
�

�

�




-

dot

- .
���
-

atsign

- @

�� �
-

leftbrace

- {
���
-



DRAFT—Specification of the FHiCL—DRAFT 9

rightbrace

- }
���
-

leftbracket

- [
���
-

rightbracket

- ]
���
-

comma

- ,
���
-

is

- :
���
-

specifications

�
� definition ��

�override �

�



�



-

error

- any character
�� �
-

3.3 High-level entities

Whitespace, hashcomments and doublesolidus comments are dropped when recognized;
therefore, they are not significant. They will not be mentioned in the following grammar
rules.

A sequence of strings will be concatenated.



10 draft 4

PROLOG keyword and PROLOG END keyword sequences, if present, must occur in
complete sets. All definitions occuring within such a set are omitted from the output.

The document is the highest-level construct in FCL. Any implementation of an FCL
parser processes a document as a single string.

An empty output is acceptable.

Null is an appropriate distinct value of the parser implementation language.

The output of a successful parse of a document is a table of definitions. Overrides
are not included in the output table. An override which does not find its search target is
an error. If multiple copies of a name occur, then a later occurance overrides an earlier
occurance. An implementation may issue warning messages detailing such overrides. A
user may choose choose to treat such warnings as errors.

document

�
� END

�� �
� PROLOG
�� �
� specifications � PROLOG

�� �
��
�specifications �

�



�



-

definition

- name - is - value -

numeric

- number�
�- integer

�- ordinal

�





-



DRAFT—Specification of the FHiCL—DRAFT 11

value

- atom�
�- numeric

�- (
���
- numeric - ,

���
- numeric - )
���
�- table

�- sequence

�- reference

�











-

sequence

- leftbracket �
�- value �

�value � ,
���
�

�



�


- rightbracket -

table

- leftbrace �
�- definition �

�definition � ,
���
�

�



�


- rightbrace -

hname

- name �
�- (

���
- last
�� �
�

�- ordinal

�


- )

���

�



�


�
��

� - .
���
- name�

�- [
���
- integer - ]

���

�



�
�

�



�



-



12 draft 4

reference

- hname - atsign - db
�� �
�

�- local
�� �


�



-

override

- hname - is - value�
�- reference

�



-

A reference is replaced by the value referenced. It is an error if the value referenced
does not exist.

An element of type override is used to change the value of an existing element in the
vector of tuples already built. The tuple being modified must be named. The version
number indexes into a subvector of tuples with that name. If the overrride extends a
sequence and there are missing intermediate values, then the intermediate values are
set .nil.

In an hname, the optional field immediately after the inital name field supplies a
version value. If omitted, then there must be only referencable value by that name and
that is the referenced value. “(last)” means the highest available version.

4 Configuration language semantics

4.1 High-level result of a successful parse

The output of a successful parse of a document is a vector of name and value tuples. The
user of FCL has a choice of which values in the vector are significant.

When the vector or a value is pretty printed, if an atom meets the pattern of a numeric,
then it is printed without quotation, regardless of its original quotation. In the vector of
tuples, all atoms are strings. Complex numbers are formed into strings as well.

The implementation must process “@local” references itself. The implementation may
process “@db” references as it chooses, including considering them to be errors.

4.2 Representation of atoms

In the parse results, all atoms except for null and references are represented as character
strings. The atom null is represented by a value specified by the binding for a given
programming language. The resolution of references is described in section 4.3 below.



DRAFT—Specification of the FHiCL—DRAFT 13

Each language binding provides its own mechanism for turning atoms of type inte-
ger, real and complex from their string representation into the appropriate numerical
representation.

4.3 Resolution of ref s

Atoms of type ref are replaced by the value indicated by the hname part of the ref, where
the environment in which the hname is evaluated is determined by the db or here at the
end of the ref.

The presence of here indicates that the scope in which the hname is to be sought is
the previously-read document text. The presence of db indicates that the scope in which
the hname is evaluated is the single database to which the parser has access. If the
parser has no access to a database, and a ref which ends in db is encountered, a parse
failure results. If, in the appropriate scope, the hname in a ref does not resolve to any
value, a parse failure results.

A Differences between JSON and FCL

The language described is, by intention, similar but not identical to the Javascript Object
Notation (JSON), described at http://www.json.org.

Where JSON uses the name object, we use the name table. Where JSON uses the
name array we use the name sequence.

The configuration language differs from JSON in several ways. We draw special
attention to the following.

1. JSON requires that the names of members in an object be strings, which in JSON
are always delimited by double quotes. In the configuration language, names
of members of objects are not quoted, and are subject to different constraints;
approximately stated, names must be suitable as variable names in commonly-
used programming languages. See the grammar specification below for an exact
description of the constraints.

2. JSON allows documents to contain any Unicode character. The configuration
language restricts documents to contain only printable ASCII characters. This
choice was made for the configuration language because some of the languages for
which we require bindings do not have convenient support for Unicode.

3. JSON does not directly support complex numbers. The configuration language has
direct support for specification of values that are complex numbers.

4. JSON recognizes number as a primitive data type. In the configuration language,
numbers and strings are united into a common type atom. This choice was made for
the configuration language because we need to support producing a printed repre-
sentation for every value that is identical to the representation in the configuration
document.

http://www.json.org


14 draft 4

B Processing notes for URI inclusion

1. Use recursion.

2. Arguments are:

a) File-like object to receive the output.

b) URL to be processed.

c) Stack of currently in-process URLs.

3. If URL to be processed already is in stack, then return (possibly with error indica-
tion).

4. Add URL to stack top.

5. Open URL, using search procedure described in Preprocessing.

6. If URL open failed, then return (possibly with error indication).

7. Set current position to zero.

8. Processing loop:

a) Copy lines, adding line length to position.

b) When a include line is discovered:

i. Close URL reading.

ii. Call this routine with:

A. File-like object to receive the output.

B. The just discovered URL to be processed.

C. Stack of currently in-process URLs.

iii. Handle or ignore any error

iv. Reopen current URL and read to current position.

9. Pop current URL from stack.

10. Return normally to caller.



Index

atsign, 8
comma, 9
definition, 10
digit, 4
document, 10
dot, 8
doublesoliduscomments, 6
error, 9
exponent, 5
false, 6
hashcomments, 6
hexdigit, 4
hname, 11
is, 9
leftbrace, 8
leftbracket, 9
name, 7
nil, 6
nonzerodigit, 4
number, 7
numeric, 10
octaldigit, 3
optionalsign, 5
ordinal, 7
override, 12
preprocessorlines, 2
reference, 11
rightbrace, 8
rightbracket, 9
sequence, 11
sign, 5
specifications, 9
string, 7
table, 11
true, 6
value, 10
whitespace, 6

15


	1 Introduction
	2 Preprocessing
	3 Configuration language syntax
	4 Configuration language semantics
	A Differences between JSON and FCL
	B Processing notes for URI inclusion
	Index

