JobSub API Project
The JobSub web service is a RESTful API written in Python. It uses the CherryPy library to provide access to the JobSub service for submitting to Condor.
Project Structure
client
Contains source for the Python client. Uses pycurl library to access the server through RESTful API.
server
conf
Contains Apache and jobsub tool configuration.
setup
Contains setup scripts for local development environment and for installation on server virtual machine.
webapp
Contains source for the server. Depends on CherryPy library.
lib
Contains source code for accessing jobsub tool configuration parameters and a wrapper for logging.
packaging
Contains RPM spec file and script to generate rpm file using rpmbuild.
Development
Development depends on CherryPy for exposing the jobsub tool through RESTful APIs. The feature of CherryPy that maps the RESTful URL to objects is called popargs. The popargs decorator treats the URL as a stack. Arguments and resources are popped off the stack and mapped to Python classes as method parameters. A simple example is the AccountingGroupsResource class. It maps to the acctgroups resource in the URL by being a member of the Root object named acctgroups. The @cherrypy.popargs('acctgroup') decorator takes the value to the right of the acctgroups resource in the URL and sets it as the value of the acctgroup parameter of the index() method on the AccoutingGroupsResource class.
The index() method is exposed by the @cherrypy.expose decorator. This lets CherryPy know that we want this method to serve HTTP requests. In the index() method we check the HTTP request method to know what action to take on the resource. For example the GET method on the AccountingGroupsResource with no parameter will return the list of accounting groups supported by the jobsub tool installation.
There are a couple other decorators in use for this project. The @format_response decorator checks the HTTP Accept header to decide how to format the response. Supported content types are application/json, text/plain, text/html and application/x-download. The @check_auth decorator checks that the supplied user has permission to get a VOMS proxy.
Packaging
A script has been made to package the server portion of the project into an RPM file that can be used for installation. Usage is:
1. git clone ssh://p-jobsub@cdcvs.fnal.gov/cvs/projects/jobsub
2. ./jobsub/packaging/package.sh
3. Upload the file to Redmine so it can be accessed by server installation
Installation
A script has been made for installation of the server on a virtual machine. Usage is:
1. wget https://cdcvs.fnal.gov/redmine/projects/jobsub/repository/revisions/master/raw/server/setup/server_setup.sh
2. chmod 755 server_setup.sh
3. ./server_setup.sh
Usage
Client
A simple example of job submission using the client is:
[bookmark: _GoBack]./jobsub.py --jobsub-server https:// fermicloud060.fnal.gov:8443 --group nova --nowrapfile file://./test_local_env.sh 600
The output and error result of the json response will be parsed and printed out to the console. The result should contain the cluster id of the job.
A simple example to retrieve the sandbox:
./fetch_log.py --jobsub-server https://fermicloud060.fnal.gov:8443 --group nova --job 2
A zip file will be created with the contents of the output sandbox
Server
The server installation will take care of the usage for the server. Information about access and errors is output to files in the /opt/jobsub/server/log directory. Job submission logs and output will be under the /scratch directory.

