
Vertex Finding
Joshua Spitz
5/13/2010

Motivation for vertex finding

• Determine if neutrino-candidate’s vertex is
inside fiducial volume.

• Assist in matching tracks in 3D.

• Seed cluster finding and track fitting algorithms.

• Seed final-state-interaction characterization
algorithm.

• ...

The Harris corner detector*

*Motivated by U. Warwick group

H(x, y) = (∆x∆y)A
�

∆x

∆y

�

λ=eigenvalues of A

CHarris and M. Stephens. A Combined Corner and Edge Detector. Proc. Alvey Vision Conf., Univ. Manchester, pp. 147-151, 1988.

A = w(x, y)
�

(∂x)2 (∂x)(∂y)
(∂x)(∂y) (∂y)2

�

∂x=intensity variation in x direction

w(x, y)=2D Gaussian weight∆x=shift in x

http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/Spatial/Docs/Harris/
http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/Spatial/Docs/Harris/

The corner detector input
• The Harris corner detector is inherently very

sensitive to noise. An actual raw data image of the
event will not work as an input to the algorithm.

• Instead of raw data, the vertex finder takes hits
that have been associated with DBSCAN clusters
(noise-free hits) as an input.

Raw data DBSCAN Hits

• The problem with inputting the DBSCAN hits (wire,
crossing time) directly is that there is a lot of empty
space in between hits. This empty space can confuse the
corner finding algorithm.

• Pixelization is necessary to ensure equal hit sizes and
minimal empty space in between adjacent hits on a track.

• Pixelization is done in the time direction only and is
equivalent to root’s ReBin(n) method. That is, it breaks
up the 2048 time samples into 2048/n bins

• Perhaps a more sophisticated smoothing algorithm will
work better.

Pixelization

A stretched view of the event.
Remember that there are 2048 samples

in time and 240 samples in wire.

DBSCAN Hits Pixelized Hits

Difficulties
Harris ResponseInput

• I have found that the Harris
algorithm is quite sensitive to
diagonal (jagged) tracks and will
often find spurious corners at
these jagged edges.

• This may be a product of a poor
parameter choice. The k-value,
Gaussian window sigma, and
pixelization factor are tunable
parameters in the algorithm.

• An improved pixelization
(smoothing) algorithm would
reduce the jaggedness of the
diagonal.

• Perhaps the Warwick group can
comment?

• It seems to me that some sort
of shading is required for the
algorithm to work to its full
potential.

J. Spitz, Yale

Making the corner finding
algorithm’s job easier with shading

Pixelized, binary hits
Pixelized hits with shading in the

positive wire direction

The corner finding
algorithm works much

better with well defined
regions of high and low.

Shading cont’d
• One can imagine a scenario in which complete

one-sided shading obfuscates the vertex. A one-
sided Gaussian shading is employed instead in
order to reduce the chance of this.

Pixelized hits with Gaussian shading in
the positive wire direction

Pixelized hits

Step 1. Raw data Step 2. Hits associated with
DBSCAN clusters

Step 3. Pixelized, binary hits Step 4. Pixelized hits w/ one-
sided Gaussian shading

The Harris response after shading

• Note that all Harris vertices are required to fall within
the time (endtime-starttime) of an existing hit.

Harris Response superimposed on input

• After shading, the Harris response
no longer includes those hits along
the jagged diagonal.

• The “true” neutrino vertex is found
along with the other (neutron-
induced? de-excitation γ?) vertices.

Strong/weak vertex definition

Strong vertices Weak vertices

Window around a hit
Harris-vertex
Hough-line (endpoints at +/-inf)

• A missed vertex seems much worse than a spurious vertex.
For this reason, I have employed the concept of “weak” and
“strong” vertices, with the Hough line finder working
together with the Harris vertex finder to categorize the
vertex in question.

Strong and weak vertices

Strong vertex

Weak vertex

• The VertexMatch module in VertexFinder matches
hits, Harris vertices, and Hough line crossings, given
a proximity requirement.

Hough lines Vertices

HarrisVertexFinder
• A LArsoft module to find vertices.

• xml parameters:

• kValue, the parameter that defines the contours of the
eigenvalue space in determining cornerness.

• TimeBins, the number of time bins to use in pixelization.

• Gsigma, sigma of the Harris algorithm’s Gaussian window.

• Gsigmasmear, sigma of the one-sided Gaussian shade.

• MaxCorners, maximum number of vertices to find.

xml parameters for
VertexMatch

• A LArSoft module to match hits, Hough line
crossings, and Harris vertices and define the
strength of a vertex.

• xml parameter:

• Window size for hit-line match

vs.

To do

• Make pixelization (smoothing) and/or shading
more sophisticated.

• Match vertices in 3D.

• strong vertex in one view + weak/strong vertex
in another view = 3D vertex, if “close” in time.

• MC comparison (need matching in 3D first)

