

Alexander Moibenko

File Aggregation in Enstore
(Small Files)

https://cdcvs.fnal.gov/redmine/projects/show/fileaggregation

07/20/10 2Enstore File Aggregation

Problem
● Writing or reading a tape mark (EOF) at the end of a file

takes about 3 seconds. Writing or reading a full tape of
continuous data takes just under 2 hours at top speed.

– Thus, a tape full of 360 MB files would take twice as long
—4 hours.

– So files ought to be much larger; a few GB is good.

● And as tape capacity and speeds grow, the minimum
desirable file size increases also. “Eventually, any file
becomes small.”

07/20/10 3Enstore File Aggregation

Project Goals
● Automatically aggregate small files into

larger “container” files, with configurable
definitions of “small” and “larger.”

● Transparently aggregate user's files
through existing enstore interface (encp)

● Assume custodial ownership while staged
to disk awaiting aggregation

● Preserve end-to-end check-summing
● Per customer "small file" policies

07/20/10 4Enstore File Aggregation

What files to aggregate ?
● Aggregation of files shall account for read access

patterns. Only the experiment, or no one, knows
what read patterns will be.

● File aggregation policy must be flexible enough to
adapt to different patterns without changing code.

● Aggregation of files by file family and directory
trees is good to start with.

07/20/10 5Enstore File Aggregation

Implementation requirements
● File caching component inside Enstore

– temporary storage for incoming files, containers, and
unpacked files – must be almost as safe as tape.

– full control over cache disk access to optimize
● IO bandwidth to tape
● concurrent Read and Write operations

– enstore disk movers can access any unpacked file in
cache; tape movers can access any container.

● Compatibility with name-space (pnfs now, chimera
later) and current client tools (encp).

07/20/10 6Enstore File Aggregation

Structure of integrated data caching and tape system using encp and
disk movers.

07/20/10 7Enstore File Aggregation

Description of components
● Library Manager Director – determines whether to send data

to tape directly or to cache for aggregation.

● Library Manager Policy Engine – policy engine for
selection of the LM to send encp request to.

● Disk Library Manager – standard enstore library manager
configured for disk movers

● Disk Movers – modified enstore disk movers

● File State Notifier – notifies Policy Engine Server about
changed state of file (created, written to cache, etc)

● Manager Policy Engine – policy engine for selection of an
LM to direct encp request to.

07/20/10 8Enstore File Aggregation

Description of components (cont.)
● Policy Engine Server receives event from Notifier

specifying that the new file arrived into cache or the file
written to tape needs to get staged from it. PE Server has 3
types of file lists:

– Archive – files to be written to tape.

– Stage – files to be staged from tape(s) to cache.

– Purge – files to be purged in cache.

● Migrators aggregate data in cache and write containers to
tape. They also stage aggregated data and unpack files for
read requests. All files in a container read from tape get
unpackaged and cached, even if not requested.

07/20/10 9Enstore File Aggregation

Policy Engine
● Sun's Intelligent Event Processing engine (IEP), part of the

Glassfish Application Server. It has GUI to set and edit
rules. Open Source - Event Driven Application Server

– operate on events in time window

– process, split, combine event streams

– store data in DB or call execution of the process at the end
of processing chain

– API to provide input data feed and output sink

– Recovery mechanism can be provided outside of EDAS if
not provided internally

● Communication Provider: AMQP. Has interface to all used
languages (Python – enstore, Java, C, C++)

07/20/10 10Enstore File Aggregation

File Aggregation
● When PE has collected “enough” files it triggers

aggregation of files into container.

● Ultimate disaster recovery: tape in hand but name-space is
completely lost. Information will be included in each
container to enable restoration of files with the names as
originally stored by the user.

– Similar capability already exists for non-aggregated files

07/20/10 11Enstore File Aggregation

Scope of The Project
● Enstore Cache

– integrate at least one multi-client file system.

● Policy Engine

– Develop event feed, sink, rules.

● Migration/Purge Dispatcher

● Select and integrate reliable messaging system (AMQP)

● Migration Modules integrated with Enstore

07/20/10 12Enstore File Aggregation

Status of The Project
● HLD for the whole system – in progress

● HLD for components – in progress

● Enstore Cache

– Still selecting (consider ZFS as base)

● Policy Engine

– IEP installed, tested, tested proof of concept

● AMQP installed, tested, tested proof of concept

07/20/10 13Enstore File Aggregation

Status of The Project (cont)
● Event Notifier – in HLD

● Library Manager Director – in HLD

● Event Notifier – in HLD

● Migration/Purge Dispatcher - in HLD

● Migrator – in HLD

● Disk Mover – 80% done

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

