File Aggregation in Enstore
(Small Files)

https://cdcvs.fnal.gov/redmine/projects/show/fileaggregation

Alexander Moibenko



Problem

e Writing or reading a tape mark (EOF) at the end of a file
takes about 3 seconds. Writing or reading a full tape of
continuous data takes just under 2 hours at top speed.

— Thus, a tape full of 360 MB files would take twice as long
—4 hours.

— So files ought to be much larger; a few GB is good.

e And as tape capacity and speeds grow, the minimum
desirable file size increases also. “Eventually, any file
becomes small.”



Project Goals

» Automatically aggregate small files into
larger “container” files, with configurable
definitions of “small” and “larger.”

* Transparently aggregate user's files
through existing enstore interface (encp)

» Assume custodial ownership while staged
to disk awalting aggregation

* Preserve end-to-end check-summing
» Per customer "small file" policies



What files to aggregate ?

» Aggregation of files shall account for read access

patterns. Only the experiment, or no one, knows
what read patterns will be.

» File aggregation policy must be flexible enough to
adapt to different patterns without changing code.

e Aggregation of files by file family and directory
trees is good to start with.



Implementation requirements

o inside Enstore

— temporary storage for incoming files, containers, and
unpacked files — must be almost as safe as tape.

— full control over cache disk access to optimize
IO bandwidth to tape
 concurrent Read and Write operations
— enstore disk movers can access any unpacked file in
cache; tape movers can access any container.

e Compatibility with name-space (pnfs now, chimera
later) and current client tools (encp).



Structure of integrated data caching and tape system using encp and
disk movers.

Library
Director '311(:}" Engin

ek aEtnrr over File State
MNMotifier

Migration olicy Engin
Dispatcher Server
Migrator :I

=




Description of components

Library Manager Director — determines whether to send data
to tape directly or to cache for aggregation.

Library Manager Policy Engine — policy engine for
selection of the LM to send encp request to.

Disk Library Manager — standard enstore library manager
configured for disk movers

Disk Movers — modified enstore disk movers

File State Notifier — notifies Policy Engine Server about
changed state of file (created, written to cache, etc)

Manager Policy Engine — policy engine for selection of an
LM to direct encp request to.



Description of components (cont.)

Policy Engine Server receives event from Notifier
specifying that the new file arrived into cache or the file
written to tape needs to get staged from it. PE Server has 3
types of file lists:

— Archive — files to be written to tape.
— Stage — files to be staged from tape(s) to cache.

— Purge — files to be purged in cache.

Migrators aggregate data in cache and write containers to
tape. They also stage aggregated data and unpack files for
read requests. All files in a container read from tape get
unpackaged and cached, even if not requested.



Policy Engine

e Sun's Intelligent Event Processing engine (IEP), part of the
Glassfish Application Server. It has GUI to set and edit
rules. Open Source - Event Driven Application Server

— operate on events in time window
— process, split, combine event streams

— store data in DB or call execution of the process at the end
of processing chain

— API to provide input data feed and output sink

— Recovery mechanism can be provided outside of EDAS if
not provided internally

e Communication Provider: AMQP. Has interface to all used
languages (Python — enstore, Java, C, C++)



File Aggregation

 When PE has collected “enough” files it triggers
aggregation of files into container.

e Ultimate disaster recovery: tape in hand but name-space is
completely lost. Information will be included in each
container to enable restoration of files with the names as
originally stored by the user.

— Similar capability already exists for non-aggregated files



Scope of The Project

Enstore Cache
— integrate at least one multi-client file system.
Policy Engine
— Develop event feed, sink, rules.
Migration/Purge Dispatcher
Select and integrate reliable messaging system (AMQP)

Migration Modules integrated with Enstore



Status of The Project

HLD for the whole system — in progress
HLD for components — in progress
Enstore Cache
— Still selecting (consider ZFS as base)
Policy Engine
— IEP installed, tested, tested proof of concept
AMQP installed, tested, tested proof of concept



Status of The Project (cont)

Event Notifier — in HLLD

Library Manager Director — in HL.D
Event Notifier — in HLLD
Migration/Purge Dispatcher - in HLD
Migrator — in HLD

Disk Mover — 80% done



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

