
Seed Finding and Bezier Tracking in LArSoft - Technical Manual

Ben Jones, MIT

November 20, 2013

Abstract

This note describes the Seed Finding and Bezier Tracking TPC reconstruction algorithms in LArSoft.
I give a conceptual overview of seeds and bezier tracks, provide instructions for how to use these objects for
reconstruction and analysis applications, and then give a detailed technical description of the algorithms
and data products involved in the SeedFinding and BezierTracking process.

Contents
1 Introduction 2

2 Conceptual Overview 2
2.1 Seeds . 2
2.2 Bezier Tracks . 4

3 Seed Finding 4
3.1 Using Seeds in LArSoft . 4

3.1.1 Producing seeds with SeedFinderModule . 4
3.1.2 Calling SeedFinderAlgorithm . 5

3.2 The recob::Seed Data Product . 6
3.3 Seeds in the Event Display . 7
3.4 Seed Finding Performance . 7
3.5 Technical Description of the SeedFinderAlgorithm . 7

3.5.1 Public Interfaces . 7
3.5.2 Parameters of the SeedFinderAlgorithm . 7
3.5.3 Cluster overlap checking . 11
3.5.4 Internal book keeping tables . 11
3.5.5 The Seed finding loop . 12
3.5.6 Determining seed centers and directions . 12
3.5.7 Consolidating and extending seeds . 13
3.5.8 Final attempt for unseeded combinations . 13

4 Bezier Tracking 13
4.1 Using Bezier Tracks in LArSoft . 13

4.1.1 Producing Tracks with BezierTrackerModule . 13
4.1.2 Retrieving BezierTracks from the Event . 14

4.2 The trkf::BezierTrack Analysis Object . 14
4.2.1 Internal Structure and Organization of the Bezier Track 14
4.2.2 Bezier Interpolation and the BezierCurveHelper . 15

4.3 Bezier Tracks in the Event Display . 16
4.4 Bezier Tracking Performance . 16
4.5 Technical Description of the BezierTrackerAlgorithm . 16

1

4.5.1 Parameters of the BezierTrackerAlgorithm . 17
4.5.2 Producing the organized hit collection . 18
4.5.3 Cluster Overlap Checking and Hit Filtering . 18
4.5.4 Making Bezier Tracks . 18
4.5.5 Overlap Filtering and Track Joining . 20
4.5.6 Bezier Vertexing . 21
4.5.7 Bezier Calorimetry . 21

5 Conclusions 21

1 Introduction
Liquid argon time projection chambers give an unprecedented level of position resolution with which to study
neutrino interactions in the 10 MeV - 100 GeV energy range. There are many benefits provided by this high
resolution, which include the following: electromagnetic showers can be classified into electron and photon
induced cases by examination of the first few millimeters of the evolving shower; low energy interaction
products and nuclear fragments around an event vertex, which in previous detectors would have been simply
labelled as “vertex activity”, can be analyzed to explore the nuclear physics of neutrino interactions; and
assumptions relating to lepton kinematics for the extraction of differential neutrino scattering cross sections
can be relaxed by examining the hadronic final state of a neutrino interaction in detail.

However, this additional level of detail presents major challenges for event reconstruction, especially when
coupled with the problem of transforming from the TPC coordinate system, which consists of several planes
of partially degenerate yet still partially incomplete information, into the 3D coordinate system. Whilst much
information can be obtained from 2D image analysis, the transformation into 3D is a necessary precursor to
pitch corrected calorimetric reconstruction of an event.

This technote describes one approach to finding well specified 3D regions of event activity, called Seed
Finding, and one tracking algorithm which makes use of these regions called Bezier Tracking. These al-
gorithms have been developed for the MicroBooNE experiment within the LArSoft framework. We begin
with a brief conceptual overview of both seeds and bezier tracks in section 2. Sections 3 and 4 give detailed
descriptions of the seed finding and bezier tracking algorithms, respectively. In both cases the section be-
gins with a “tutorial” style subsection on how an analyzer / algorithm developer can make use of seed and
bezier track information within LArSoft. A description of the relevant data products is given, followed by a
brief overview of the performance of each algorithm using simulated MicroBooNE events, and finally a full
technical description of the algorithm implementation is given.

We assume familiarity with the general design principals of the LArSoft framework, including the roles
of producer modules, analyzer modules, data products and fhicl configuration scripts. Familiarity with the
TPC coordinate system and its relation to the 3D coordinate system is also useful. In order that divergences
between the code repository and the code described in this note can be understood, the version numbers of
each LArSoft package at the time of writing are given in figure 1. A list of LArSoft files which have significant
sections devoted to Seed Finding and Bezier Tracking is given in table 1.

2 Conceptual Overview

2.1 Seeds
Seeds represent unambiguous, straight, three dimensional regions of event activity. A seed is defined by a
three dimensional point, and a direction vector with a length which extends in both directions. This is shown
as a cartoon in figure 2, left. The goal of the SeedFinder algorithm is to identify regions where the TPC
activity across all planes in the TPC indicates an unambiguous straight section, and provide information
about these sections as instances of the recob::Seed data product.

2

Figure 1: Version numbers of various packages in the LArSoft repository at the time of writing this note

3

Table 1: List of LArSoft files with large sections devoted to Seed Finding and / or Bezier Tracking

2.2 Bezier Tracks
A BezierTrack represents a three dimensional trajectory which is formed by interpolating between seeds. A
cartoon is shown in figure 2, right. A BezierTrack may be formed from any combination of one or more
seeds. A single-seed bezier track is a straight line, and has a trajectory which is exactly identical to the seed
from which it was formed. A multiple-seed bezier track is in general a curved object. The track trajectory is
expressed in terms of a single parameter s, which varies smoothly from 0 to 1 along the length of the track.
The trajectory can be sampled at any S value, and intervals of uniform S represent intervals of uniform
distance along the track (so, for example, s=0.25 will always give the point which is one quarter of the way
along the trajectory). The goal of the BezierTracker algorithm is to identify sets of seeds which can be sensibly
interpolated and produce trkf::BezierTrack analysis objects, which are each appropriately parameterized by
a smoothly varying S coordinate.

3 Seed Finding

3.1 Using Seeds in LArSoft
Seeds are constructed from sets of hits using the SeedFinderAlgorithm in the RecoAlg package. There are
two ways to produce seeds for use in an algorithm / analysis.

3.1.1 Producing seeds with SeedFinderModule

The first way to produce seeds is to use the SeedFinderModule. This is the recommended method for most
applications, and only needs to happen once in the reconstruction chain. The module has two parameters
which specify what raw materials to use for producing seeds (InputSource and InputModuleLabel), and the
module configuration accepts a parameterset for the SeedFinderAlgorithm which specifies all the parameters
relating to the seed finding operation (described in section 4.5.1).

This module can be run in two modes, dictated by the InputSource parameter. If configured with
InputSource=0, the module will retrieve a hit collection from the event and produce all possible seeds from
this collection. If configured with InputSource=1, the module will retrieve a cluster collection from the event
and produce seeds based on combinations of overlapping clusters. The latter mode allows the SeedFinder
to use the results of pattern finding algorithms in 2D, which have collected hits corresponding to distinct

4

True trajectory
Seed
Space points

True trajectory
Seed
Bezier track
Space points

Figure 2: Cartoon showing a seed (left) and bezier track (right), overlaid on the true particle trajectory, and
the relevant set of possible spacepoints obtained from the TPC

features in the event into clusters. This both improves the computational speed of the SeedFinderAlgorithm
by reducing the combinatorics of hit-overlaps, and can also help mitigate the effect of fake spacepoints from
spurious cluster overlaps near a vertex. In both source modes, the InputModuleLabel parameter specifies the
name of the producer from which the hits or clusters originated, and is used to look up the relevant collection
in the event record. Once seeds have been produced and stored in the event, they can be retrieved using the
standard ART tools, which are described in the LArSoft wiki. A sample of code lifted from SeedAna is given
below.

art::Handle< std::vector<recob::Seed> > seedh;
evt.getByLabel(fSeedModuleLabel, seedh);
if(seedh.isValid()) {

int nseed = seedh->size();
for(int i = 0; i < nseed; ++i) {

art::Ptr<recob::Seed> pseed(seedh, i);
pseed->[etc...]
}

}

3.1.2 Calling SeedFinderAlgorithm

The second way of making seeds is to call the SeedFinderAlgorithm directly. This approach is favored
by the Bezier Tracker and Kalman Filter algorithms, since these use an iterative method which involves
searching for seeds in various different hit collections, rather than the entire collection for the event or cluster
combination. There are two public methods of SeedFinderAlgorithm supplied for this purpose. First, the
GetSeedsFromUnsortedHits method:

std::vector<recob::Seed> GetSeedsFromUnsortedHits (
art::PtrVector<recob::Hit> const& HitsFlat,
std::vector<art::PtrVector<recob::Hit> >& CataloguedHits,
unsigned int StopAfter)

5

This method accepts a PtrVector of recob::Hits and returns a vector of recob::Seed objects. The first
argument supplies the list of hits to be used for seed finding. The second argument is a reference to a vector
of PtrVectors to be filled, returning art::Ptrs to the original hits but organized in terms of their association
to each seed (for example, the second seed in the return vector is associated with the hits collected in the
second entry in CataloguedHits). This vector should be supplied empty to avoid unpredictable behaviour.
Finally, the StopAfter parameter allows the user to specify how many seeds to search for in this collection.
In situations where only one seed is required from a particular set of hits, significant computational time
may be saved by stopping the search for seeds after one is found. If zero or no value is supplied, seed finding
continues until the hit collection is exhausted. In general, seeds are found from high to low Z (= collection
plane wire coordinate).

The GetSeedsFromSortedHits method is designed to find seeds in cluster combinations. In this case, a
more organized collection of hits is supplied. The SortedHits object provides hits organized into collections
in each view.

std::vector<std::vector<recob::Seed> > GetSeedsFromSortedHits(
std::vector<std::vector<art::PtrVector<recob::Hit> > > const& SortedHits,
std::vector<std::vector<art::PtrVector<recob::Hit> > >& HitsPerSeed,
unsigned int StopAfter)

The index of the top level vector in SortedHits is an integer representing the view, which for MicroBooNE
can be either 0 for geo::kU, 1 for geo::kV or 2 for geo::kW. This splits the collection at the highest level into
hits from each view. The next level of organization is a vector of PtrVectors, with each element representing
one cluster in the given view. Finally, each cluster contains many hits, which are stored as the elements of
the lowest level PtrVector.

The returned seed vector from this method has an additional level of structure relative to the unsorted
method, with one vector of seeds being returned for each cluster combination. This vector has one entry
per possible overlap, and where no seeds are produced or there is no 3D overlap, the entry is an empty
seed vector. As such, the size of the top level return vector is always nU*nV*nW, where nU, nV, nW are
the numbers of clusters which were supplied in each view, even in the extreme case where no seeds are
actually found and every element corresponds to an empty seed vector. The HitsPerSeed object has the
same interpretation as in the unsorted method but with a similar per-cluster-combination structure. The
StopAfter parameter provides the option to search for a finite number of seeds per cluster combination
(for example, StopAfter=1 would return at most one seed per UVW cluster combination). An example
showing how to produce the structured hit object from an unstructured set of clusters can be found in the
SeedFinderModule::GetSortedHitsFromClusters method.

3.2 The recob::Seed Data Product
The recob::Seed is a very simple data product. The most important data members are a SeedPoint, a
SeedDirection and errors on both of these values. These data members, their getter and setter methods
as well as the seed constructor are self explanatory from the Seed.h header file. Note that the present
implementation of SeedFinderAlgorithm does not set values for the seed errors, but they are included in the
data structure for possible future use cases. There is one further data member, the boolean flag fIsValid.
This flag is set to true for any seed constructed with a point and a direction supplied, but false for a seed
constructed using the default constructor with these values not set. This is used for book-keeping during
seed finding, and in general no seeds with IsValid=false should ever be stored into the event record. The
value of this flag can be controlled after seed construction using the SetValidity method.

As well as simple data members, the Seed class provides various geometrical methods for evaluating the
relationship between seeds and points in 3D space. These are methods listed and illustrated in table 2.
As a LArSoft design principal, methods in a stored data product should not require interface to external
services to perform calculations, so the geometrical methods in the seed object are limited to strictly 3D
geometry calculations, and cannot evaluate projections into wireplane coordinate systems or find distances

6

to recob::Hits, etc. These more advanced geometrical operations which require information about the TPC
geometry are generally performed in the Geometry service or within algorithm or modules.

3.3 Seeds in the Event Display
Seeds which have been stored in the event can be drawn in the LArSoft event display by setting the DrawSeeds
parameter to true and setting the SeedModuleLabel string. In the two dimensional and ortho event display
views, seeds are shown projected into the relevant two dimensional coordinate system as straight lines with
the central position marked by an empty circle. When fully zoomed out, the linear extent of a small seed
may not be visible, but the marker will remain large enough to show where the seed is placed. It should be
remembered that even though they can be displayed in any 2D projection, seeds are 3D objects and each
seed is be present once in every view. In the three dimensional event display view, seeds are marked with
white 3D lines which extend out of white spheres, marking the central seed point. If SeedFinderModule has
been successful, a population of seeds which mimics the true 3D distribution of tracks should be visible, as
shown in figure 3. In general, seeds will not extend all the way to the event vertex, since there is always a
region of somewhat ambiguous directionality where several tracks emerge from a single point. It is the task
of later reconstruction algorithms to extrapolate from regions of well-defined directionality back towards the
event vertex.

3.4 Seed Finding Performance
The SeedAna module, developed by Herb Greenlee, can be used to evaluate the efficiency of seed finding for
simple events. A track is classified as successfully seeded if a seed is found along the length of the track with
a sufficient collinearity to the true trajectory at that point (the default collinearity cut cos(theta) > 0.99)
and the seed center is within a short distance (default cut 2cm) of a true trajectory point. Only particles
above a lower kinetic energy cut (default 50 MeV) are counted. The performance of the SeedFinderAlgorithm
was evaluated using a monte carlo sample of 10,000 isotropic muons in the energy range 0.1 to 2.0 GeV. The
algorithm has an efficiency of better than 99% for tracks longer than 20cm. For shorter tracks, some efficiency
is lost for tracks parallel to the drift or wire directions. The efficiency of this algorithm for this sample is
shown in figure 4, as compared with the previous version of the SeedFinding algorithm (not described in this
note).

3.5 Technical Description of the SeedFinderAlgorithm
3.5.1 Public Interfaces

The SeedFinderAlgorithm is generally called via one of the two public interfaces described in section 3.1.2.
Both of these call the main private method of the SeedFinderAlgorithm, FindSeeds, which acts on a flat,
unstructured collection of hits. The GetSeedsFromUnsortedHits method is a simple wrapper function, which
passes the arguments with which it is called directly to the FindSeeds method. Refer to section 3.1.2 for
the meanings of these parameters. The GetSeedsFromSortedHits method calls FindSeeds once for each
possible cluster combination, formed from one cluster in the U view, one in the V view and one in the W
view. Technically this is achieved by producing a flat hit collection for each cluster combination and calling
FindSeeds once for each combination.

3.5.2 Parameters of the SeedFinderAlgorithm

Table 3 gives the configurable parameters of the SeedFinderAlgorithm and their default values, as well as a
short description of each. Some of the parameters are used for more than one purpose in the algorithm. A
design decision was made to minimize the number of free tunable parameters, and use the same parameter
for two purposes where the physical interpretation of the parameter is identical.

Within the SeedFinderAlgorithm parameterset, a parameterset for SpacePointAlg is also supplied. It is
necessary for the correct functionality of SeedFinderAlgorithm that within this parameterset, PreferColl is

7

Method Return type Parameters Sketch

GetLength double -
L	

GetDistance double Seed const& AnotherSeed
D	

GetAngle double Seed const& AnotherSeed

θ	

GetProjDiscrepancy double Seed const& AnotherSeed

D	

GetProjAngleDiscrepancy double Seed const& AnotherSeed

θ	

GetVectorBetween double* xyz Seed const& AnotherSeed

v	

GetPointingSign int (always +/- 1) Seed const& AnotherSeed

+1	

-­‐1	

Reverse Seed -

GetDistanceFrom double SpacePoint

OR	

D

D

Table 2: Geometrical methods of the recob::Seed object (The seed from which the method is called is shown
in red)

8

Figure 3: Seeds displayed in the 2D (left) and 3D (right) event display views, showing the full event (top)
and zoomed into the vertex region (bottom)

9

In	
 plane	
 of	
 w
ires	

In	
 plane	
 of	
 w
ires	

An/-­‐parallel	
 to	
 dri3	

In	
 plane	
 of	
 w
ires	

Parallel	
 to	
 dri3	

 Forw
ard

 Parallel to W
 w

ires

 Parallel to W
 w

ires

 Backw
ard

 Backw
ard

 Parallel to U w
ires

 Parallel to U w
ires

 Parallel to V w
ires

 Parallel to V w
ires

Track length (cm)

Figure 4: Efficiency plots for the SeedFinderModule, evaluated on a low energy isotropic muon sample. Black
shows the performance of the latest version of the algorithm (described in this note), compared to red points
which show the previous version of the SeedFinderAlgorithm (deprecated in October 2013).

10

Name Type Default Description
InitSeedLength double 2. Distance to look around high Z point for spacepoints (cm)
MinPointsInSeed int 4 Minimum number of spacepoints in collection to look for seeds

Refits int 5 Number of times to extend and refit seed
HitResolution double 1. Number of hit widths to assume for hit extent
OccupancyCut double 0.8 Fraction of channels in each view which must have activity in seed
MaxViewRMS vector<double> [2.,2.,2.] Max allowable RMS of hits around seed
ExtendSeeds bool true Flag determines whether seeds are extendable or fixed length
LengthCut double 0 Minimum seed length cut after consolidation

SpacePointAlg pset N/A Parameterset for the spacepoint algorithm

Table 3: Configurable parameters of the SeedFinderAlgorithm

Name Structure Purpose
OrgHits OrgHits[View][Channel] = {ihit_1, ihit_1...} Catalogue all hits by view and channel

HitsPerSpacePoint HitsPerSpacePoint[ispt] = {ihit_1, ihit_2...} Which hits go with which spacepoint
SpacePointsPerHit SpacePointsPerHit[ispt] = {ispt_1, ispt_2...} Which spacepoints go with which hit

HitStatus HitStatus[ihit] = 0,1,2 What is the present status of each hit
PointStatus PointStatus[ispt] = 0,1,2,3 What is the present status of each spt

Table 4: Lookup and status tables used for SeedFinder internal book keeping. “ihit” are integers giving
positions in the HitsFlat vector of hits. “ispt” are integers giving positions in the spts vector of spacepoints.

set to true to ensure spacepoints are supplied sorted in Z, and all three views are enabled (EnableU = true,
EnableV = true, EnableW = true). Best results have been obtained with unfiltered spacepoints (Filter =
false) and requiring 3 view coincidences only (MinViews = 3).

3.5.3 Cluster overlap checking

The FindSeeds method accepts a flat collection of hits, in a PtrVector called HitsFlat. This vector is passed
by reference to maximize efficiency.

The first operation performed by the FindSeeds method is the production of spacepoints based on the
provided hit collection using an instance of SpacePointAlg, configured with the provided parameterset. If
there are less than MinPointsInSeed spacepoints produced, the seed finding for this hit collection is stopped
and an empty vector is returned. This ensures that seeds are only searched for in cluster combinations with
some spatial overlap.

3.5.4 Internal book keeping tables

Next, several book-keeping lookup tables are filled, which enable the various hit, spacepoint and seed com-
parisons which follow to be performed efficiently. These are described below and summarized in table 4.

The OrgHits table indexes all hits in the input vector by their channel and view. The lowest level elements
of the table are integers which give the indices of hits in the HitsFlat input vector, and these are sorted
into collections corresponding to each channel and view. This allows an efficient lookup of all hits within one
specified channel and view, which is an operation performed many times within the seed finding algorithm.

The SpacePointsPerHit table has one entry per spacepoint, with each entry being a vector of integers
which correspond to indices in the HitsFlat vector, indicating which hits are associated with every spacepoint
found.

The HitsPerSpacePoint vector is the inverse lookup table, with one vector per hit which stores integers
corresponding to indices in the spts spacepoint vector. Since the recommended mode of operation of the
SpacePointAlg within SeedFinderAlgorithm is to use unfiltered spacepoints, in general each hit in all views
can feature in multiple spacepoints.

11

The HitStatus vector has one element for each element in the HitsFlat vector, and tracks the status
of each hit. A status of 0 indicates that the hit is available for forming a seed. A status of 1 indicates that
the hit has already been used in a seed. A status of 2 indicates that this hit is being considered for the
present work-in-progress seed. Each hit may appear in only one seed per cluster combination. However, if a
cluster a in view A has overlaps with clusters b1 and b2 in view B, each hit in cluster a may be used once in
combination {a b1}, and once in combination {a b2}, for example.

The PointStatus table has one element for each spacepoint and tracks the status of each spacepoint.
A value of 0 indicates that this spacepoint is unused and available for seed finding. A value of 1 indicates
that this spacepoint has been used in a seed already. A value of 2 indicates that the seed was considered for
seeding but discarded and should not be used again. A value of 3 is a flag which can be given to the first
element of the PointStatus vector, and which indicates that the final spacepoint has been used and that
seed finding should cease.

3.5.5 The Seed finding loop

Seed finding is an iterative process which continues until either enough seeds have been found (if the
StopAfter argument is nonzero), or when all spacepoints have been exhausted. This subsection gives an
overview of the procedure, and subsequent subsections treat each step in more detail.

In each round of the seed finding loop, we search for a seed around the remaining spacepoint with the
highest z coordinate using the FindSeedAtEnd method.

If we find a seed there, we call the ConsolidateSeed method which fills in any hits which were missed
in the first pass, and makes some seed quality checks. If the ExtendSeeds parameter is set to true, the
ConsolidateSeed method will also attempt to extend the seed in both directions. If the Refits parameter
has a value larger than 0, we may refit the seed to the hits we collected during consolidation and try extending
again.

Once the seed is consolidated, all hits which were collected for this seed, having been tagged with a
HitStatus of 2, are given a status 1 and removed from further consideration for future seed finding. All
spacepoints corresponding to these hits are also removed from consideration by setting their entry in the
PointStatus table to 1. If we did not find a valid seed around the highest-z spacepoint, this single point is
removed from consideration by setting its entry in the PointStatus table to 2. In subsequent iterations we
consider only hits and spacepoints with status 0 which are still available for seeding. If the FindSeedAtEnd
method cannot find any valid spacepoints, it will set the first entry in the PointStatus table to 3, indicating
that the spacepoint vector has been exhausted and seed finding for this cluster combination is complete.

3.5.6 Determining seed centers and directions

There is no single definitive way of evaluating the 3D direction implied by a set of spacepoints or a set
of hits. The SeedFinderAlgorithm has gone through several versions using different methods to evaluate
seed coordinates. The most powerful method so far involves making a linear least-squares regression on
the hits which have been collected in each view, and using the two most populated views to produce a 3D
center and direction hypothesis. This code is implemented in the GetCenterAndDirection method of the
SeedFinderAlgorithm.

Methods using spacepoint coordinates to establish seed directions tend to fail because degenerate space-
points lead to directional biases along the wire directions. Principal component analysis of hit coordinates
gave promising results, but cannot weight the hit pulls according to the widths of hits, and so suffers in
situations where hits are particularly wide, as in high angle tracks. A weighted linear least squares approach
applied to the hits in wire/time coordinates can both incorporate hit widths and minimize degeneracy based
biases.

GetCenterAndDirection(
art::PtrVector<recob::Hit> const& HitsFlat,
std::vector<int>& HitsToUse,
TVector3& Center,

12

TVector3& Direction,
std::vector<double>& ViewRMS)

This method takes as inputs a reference to the vector of all hits (HitsFlat), and a list of integers
(HitsToUse) indicating which elements of this vector should be considered in the least squares minimization.
It returns by reference a TVector3 representing the 3D seed Center, a TVector3 representing the 3D seed
Direction, and a vector of doubles giving the RMS of the hits from the seed spine in each view (ViewRMS).
Seeds for which the RMS does not pass the cut defined by the MaxViewRMS parameter will later be discarded.

3.5.7 Consolidating and extending seeds

The ConsolidateSeed method transforms both ends of the seed under consideration into wire / time coor-
dinates in each view. All hits in the cluster combination which are in the relevant channel range are looked
up using the OrgHits table, and checked to see if they lie within HitResolution times the hit width from
the seed spine in the time direction. In this way, any hits which were not incorporated in the initial fit are
included. The seed is shortened such that it only extends to the furthest hits in each direction, since even
though the seed has strong directionality over the InitLength distance, it may only have hits populating
a sub-section of that length before consolidation and need to be contracted. If the seed does not have hit
activity in a large enough fraction of its channels in each view (defined by the OccupancyCut parameter), it
is discarded.

If the ExtendSeeds parameter is set to true, the seed is extended linearly in each direction, channel-by-
channel in each view. If an available (HitStatus=0) hit exists with a time which is within HitResolution
times the hit width from the seed spine in the relevant channel then the seed extension continues. If a channel
is met with no hit consistent with the seed, this limits the extension possible in this view. The final extension
at each end of the seed is limited by the most constraining view in each case.

If the Refits parameter is greater than zero, the seed center and direction are then recalculated based
on the total set of hits now associated with the seed, and consolidation and extension is repeated a number
of times determined by the value of the Refits parameter.

3.5.8 Final attempt for unseeded combinations

If we met the cluster overlap condition but seeding failed, the algorithm makes one final attempt to find a
strong directionality using all hits in all views, rather than a subset. This can help to find seeds in collections
which are too short to successfully produce seeds with the iterative method, or which are inclined highly
relative to the wireplanes so have widely spaced but still very collinear hits. If the RMS displacement of
hits in any view from the seed spine obtained with this method is too large (determined by the MaxViewRMS
parameter) then the seed will be discarded.

4 Bezier Tracking

4.1 Using Bezier Tracks in LArSoft
4.1.1 Producing Tracks with BezierTrackerModule

BezierTracks are produced by the LArSoft EDProducer BezierTrackerModule, and stored into the event.
This producer takes clusters as an input, from a producer specified by the ClusterModuleLabel parameter.
The module also accepts a parameterset for the BezierTrackerAlgorithm which contains all the parameters
relating to bezier track finding and are described in section 4.5.1.

As well as producing a collection of tracks, the BezierTrackerModule also produces 3D vertices based on
extrapolation of tracks found, associations between tracks and these vertices, and associations from tracks to
the hits from which they were constructed.

13

4.1.2 Retrieving BezierTracks from the Event

The data object stored in the event for each bezier track is a recob::Track. This object should NOT be
used interchangeably with a track as produced by any other tracking algorithm. Instead, after retrieving the
track collection from the event, the recob::Track must be converted back into BezierTrack objects in order
to obtain the correct bezier trajectory. An example is shown below.

std::vector<trkf::BezierTrack> BTracks;
art::Handle< std::vector<recob::Track> > btbcol;
evt.getByLabel(ModuleLabel, btbcol);
for(unsigned int i = 0; i < btbcol->size(); ++i){

art::Ptr<recob::Track> btb(btbcol, i);
BTracks.push_back(trkf::BezierTrack(*btb));

}

After running this code snippet, the vector of trkf::BezierTrack objects called BTracks can be used for
analysis. Using the stored recob::Track object in analyzers designed for tracks proceed by other algorithms
will lead to inaccurate and unpredictable results. This slightly confusing design scheme was forced upon the
BezierTracker by LArSoft policy early in the algorithms development, despite the best efforts of the author
to implement a more appropriate class structure.

4.2 The trkf::BezierTrack Analysis Object
The BezierTrack object contains many powerful geometrical methods. The most important are the GetTrackPoint
and GetTrackDirection methods, which gives the track trajectory points and directions as a function of the
position S along the track (see section 2.2). The GetTrackPointV and GetTrackDirectionV methods are
wrappers for the GetTrackPoint and GetTrackDirection methods which return a TVector3 rather than an
array of doubles, for coding convenience.

The GetProjectedPointUVWX and GetProjectedPointUVWT methods provide the track trajectory as a
function of S as projected into the TPC coordinate system for each view (for tpc t and cryostat c, as per
LArSoft conventions). Each method returns the coordinates of the point in each wireplane. The coordinate
perpendicular to the wires can be given either as a position, as in GetProjectedPointUVWX, or as a drift time
in ticks, as in GetProjectedPointUVWT.

The GetCurvature method returns the local rate of change of the track direction at point s. The
GetRMSCurvature method calculates the average curvature along the track and may find application in
the measurement of track momentum through multiple scattering.

The GetLength method returns the total length of the bezier track, evaluated by finding the distance
between many evenly space points along the trajectory.

There are a suite of GetClosestApproach methods, which give the minimum 3D distance between
the track and a hit, spacepoint, seed, vector or wire/ time coordinate respectively. There are also two
GetClosestApproaches methods which accept a vector of hits, and are optimized for finding the closest
approaches between the track trajectory and many hits at once.

There are several calorimetry methods which should presently be considered work-in-progress, and can
return the pitch-corrected dQ/dx along the length of the track based on a set of hits in the collection view.

4.2.1 Internal Structure and Organization of the Bezier Track

The Bezier Track object stores its trajectory information in two complementary ways. Firstly, as a set of
trajectory points and directions, as the data members of the recob::Track base class. Secondly, as a vector
of recob::Seeds, the private fSeedCollection, which are used for interpolation calculations.

In order to ensure the track is interpolated to the very end of the outermost seeds, two extra seeds of very
short length are padded onto the end of the SeedCollection stored in BezierTrack during construction from a
seed vector. They are removed when the seed collection is accessed from the public GetSeedVector method,
so the returned collection represents the same seed vector which was used to construct the bezier track.

14

Segment	
 1	

Segment	
 3	

Segment	
 2	

Segment	
 4	

Seeds	

	

(Padding	
 seed	

added	
 internally)	

	

Posi1on	
 can	
 be	
 sampled	

for	
 any	
 value	
 0<S<1	

S=0	

S=1	

Seeds	
 form	
 which	

track	
 is	
 constructed	

Segments	
 for	

interpola6on	
 calcula6on	

(internal	
 to	
 BezierTrack)	

Bezier	
 Track	

S=0.5	

Figure 5: Sketch showing the seeds, internal segments and parameterized curve of a BezierTrack

When constructed from a set of seeds, after filling the seed collection, the BezierTrack constructor calls
the CalculateSegments method. This method establishes the length of each interpolated segment and
hence apportions regions of S along the length of the track. When a track point at position S is requested
via the GetTrackPoint method, the segment in which this point lies is determined using the pre-calculated
cumulative lengths. Then the local S value within this segment is determined, and the bezier trajectory point
is calculated along the curve connecting the two relevant seeds. Some of these concepts are shown in the
cartoon sketch of figure 5.

The underlying recob::Track, which contains all the information necessary to reproduce the track, can
be acquired using the GetBaseTrack method. This method is called to produce recob::Tracks to store
in the event. The original BezierTrack can be recreated from the recob::Track by using the constructor
BezierTrack(recob::Track).

The track can be reversed (swapping the order of the seeds and reversing each one) using the Reverse
method. A partial bezier track between limits of S can be obtained with the GetPartialTrack method. Note
that the outermost segments of the partial track are approximated with straight lines, and if both the low
and high S values are within the same segment, the resulting partial track will have no curvature. A track
trajectory represented as N spacepoints can be acquired with the GetSpacePointTrajectory(N) method.

4.2.2 Bezier Interpolation and the BezierCurveHelper

The calculation of bezier trajectory points is performed by a helper object in the RecoObjects package called
BezierCurveHelper. Given two seeds the BezierCurveHelper can be used to extrapolate to any point along
the bezier segment connecting them. A bezier curve is a polynomial curve which interpolates a series of vector
points in terms of a single parameter. The curve passes through the two end points, but in general does not
pass directly through the mid points although these determine the trajectory. Two bezier curve definitions
have been tested : a cubic curve using the seed centers, and two intermediate points from direction vectors
projected one third of the way along the line dividing the seed centers, and a quartic curve formed from
the seed centers and three intermediate points, corresponding to the ends of the seed and their projected

15

D	

D/3	

D/3	

p1	

p2	

p3	

p4	

p1	

p2	

p3	

p5	

p4	

Cubic	
 Bezier	
 Interpolator	

Quar3c	
 Bezier	
 Interpolator	

0	
 <	
 s	
 <	
 1	

	

V(s)	
 	
 =	
 	
 	
 	
 	
 	
 	
 	
 	
 p1	
 (1-­‐s)3	
 +	

	
 	
 3	
 p2	
 s(1-­‐s)2	
 +	

	
 	
 3	
 p3	
 s2(1-­‐s)	
 +	

	
 	
 	
 	
 	
 p4	
 s3	
 	

	
 	
 	
 	

0	
 <	
 s	
 <	
 1	

	

V(s)	
 	
 =	
 	
 	
 	
 	
 	
 p1	
 (1-­‐s)4	
 +	

	
 	
 4	
 p2	
 s	
 (1-­‐s)3	
 +	

	
 	
 6	
 p3	
 s2(1-­‐s)2	
 +	

	
 	
 4	
 p4	
 s3(1-­‐s)	
 +	

	
 	
 	
 	
 	
 p5	
 s4	
 	
 	

	
 	
 	
 	

Figure 6: The two BezierCurveHelper interpolation schemes. Quartic interpolation is currently favored for
bezier tracking.

point of closest approach. These two interpolation schemes are illustrated in figure 6. The quartic definition
gives a good approximation to tracks with significant curvature, as the track is forced to run along the seed
vectors for the first and last sections. However, this interpolation can behave badly when the seeds are
almost parallel and the projected crossing point is distant. For this reason, the cubic interpolator is favored
for Bezier tracking, although both methods are available in the BezierCurveHelper object.

4.3 Bezier Tracks in the Event Display
The event display can draw BezierTracks in both 2D and 3D, by setting DrawBezierTracks=true and spec-
ifying a BezierTrackModuleLabel. In both 2D and 3D the track is drawn as a smooth curve through 100
trajectory points evenly spaced along the length of the track. Bezier vertices are drawn as yellow dots at the
3D vertex point in the 3D event display. A sample bezier tracked event is shown in figure 7.

4.4 Bezier Tracking Performance
This section will be filled in following MCC 2.2

4.5 Technical Description of the BezierTrackerAlgorithm
The BezerTrackerModule runs the BezierTrackerAlgorithm in several stages. First, clusters are read in from
the event and hits are sorted into an appropriate data structure for seed finding and bezier tracking.

The main BezierTracking method, MakeTracks, is called with this data structure passed by reference as
an input parameter. This method performs seed finding and then bezier tracking.

Imperfect clustering upstream of bezier tracking introduces some artifacts into the Bezier Track collection
which are removed by the next three stages. First, FilterOverlapTracks remove short track segments which

16

Figure 7: Example of a Bezier Tracked event drawn in the LArSoft event display

Parameter Type Default Description
TrackJoinAngle double 0.5 Max angle for seed to join track (rad)

OccupancyThresh double 0.8 Fraction of channels which must have activity for extrap to be valid
OverlapCut double 0.2 Maximum allowed overlap of hits in seed with used hits

DirectJoinDistance double 5.0 Max distance between track segments to allow a join (cm)
VertexImpactThreshold double 2.0 Max impact param between tracks for vertexing (cm)
VertexExtrapDistance double 5.0 Max distance allowed for track extrapolation to a vertex (cm)

TrackResolution double 2.0 Distance from track spine where hits can be collected
SeedFinder pset - Parameterset for the SeedFinderAlgorithm

Table 5: List of the parameters of the BezierTrackerAlgorithm, with their default values and an approximate
description of each

have been reconstructed directly on top of other, longer tracks. These segments arise when the ClusterFinder
does not include a short section of the activity in one plane into the track, for some reason. Then, two
Joiner functions, MakeOverlapJoins and MakeDirectJoins attempt to connect collinear tracks which were
constructed in several parts. Next, Bezier vertexing (MakeVertexJoins) is performed. Finally the collection
of tracks, vertices, calorimetry objects and relevant associations are stored into the event.

4.5.1 Parameters of the BezierTrackerAlgorithm

Table 5 gives the configurable parameters of the BezierTrackerAlgorithm and their default values, as well as
an approximate description of each. Included in the parameter list is a parameterset for the SeedFinderAlgo-
rithm. This should be similar to the default parameterset described in section 4.5.1. Better results have been
obtained by removing very short seeds, by setting the LengthCut parameter of the SeedFinderAlgorithm to
2 cm.

17

4.5.2 Producing the organized hit collection

The MakeTracks method accepts a sorted hit collection and returns a vector of bezier tracks and, by reference,
a vector of PtrVectors to hits which associate to each of those tracks.

std::vector<trkf::BezierTrack> MakeTracks(
std::map<geo::View_t,
std::vector<art::PtrVector<recob::Hit> > >& SortedHits,
std::vector<art::PtrVector<recob::Hit> >& HitAssocs)

The SortedHits collection provided to BezierTracker has the same structure as the collection provided
to the SeedFinderAlgorithm::GetSeedsFromSortedHits method, as was described in section 3.1.2. The
key to the highest level map in SortedHits is a geo::View_t, which for MicroBooNE can be either geo::kU,
geo::kV or geo::kW. This splits the collection at the highest level into hits from each view. The next level
of organization is a vector of PtrVectors, with each element representing one cluster in the given view.
Finally, each cluster contains many hits, which are stored as the elements of the lowest level PtrVector. The
method GetHitsFromClusters of BezierTrackerModule is responsible for retrieving clusters from the event
and forming the structured SortedHits object.

4.5.3 Cluster Overlap Checking and Hit Filtering

One of the most time computationally intensive steps in the Bezier Tracking process is the formation of
spacepoints during seed finding. Completely non-overlapping clusters, and extraneous hits included in one
cluster with no overlap in another view can greatly increase the spacepoint finding time. As such, a significant
speed increase (on the order of a factor of 10) was obtained by pre-filtering the clusters and hits to remove
a) non-overlapping cluster combinations, and b) hits outside of the overlap region.

During an initial loop through all sets of hits in each view, the minimum and maximum time and wire in
each cluster is extracted. The times are corrected for the plane-to-plane time-offsets which are obtained from
the DetectorProperties service, to ensure that these times are comparable between planes. In the subsequent
steps, we only consider cluster combinations which have some overlap in time - that is, if a cluster in view A
exists completely outside of the time region of a cluster B, there can be no overlap and there is no need to
attempt to find spacepoints. This is illutrated in figure 8. We conservatively also add a small buffer around
the region of interest corresponding to the spacepoint algorithm timing resolution. We can obtain a similar
constaint in the wire coordinate. The crossing point of the highest U and V wires, and the crossing point of
the lowest U and V wires, determines the upper and lower limit in W where spacepoints can be found. If the
cluster in the W view has no hits within this region, this cluster combination has no overlap, and processing
does not continue.

Where cluster overlap is found, only the hits which exist within the 3-view overlap time window, de-
termined by the time coordinates of the most constraining views and corrected for the plane-to-plane time
offsets, need be used for seed finding (since only these hits will produce spacepoints). Hence the hit collection
which is passed to the SeedFinder is produced only from hits within the time overlap region from these three
clusters. The wire overlap region condition could also be used, but in practice for most tracks the majority
of extraneous hits are already removed by the time constraint. This can be understood as the principal that,
if the track extends beyond the region of interest in a particular view, it likely leaves the region both in
the time and wire coordinates, since most tracks are either overall upward-going or overall downward-going
rather than horizontal. In fact, the additional checking of wire coordinate as well as time coordinate was
found to slightly detriment rather than improve the performance of the algorithm over large samples, due to
the additional per-hit calculation required, so it is not included in the present version.

4.5.4 Making Bezier Tracks

The Bezier tracking routine is run for every overlapping combination of one U cluster, one V cluster and one
W cluster. The first stage is running the SeedFinderAlgorithm on the sorted hit collection. This returns a
vector of seed vectors, one for each combination, some of which may be empty.

18

Overlap	
 region	

View	
 1	
 View	
 2	
 View	
 3	

U	
 Wire	
 V	
 Wire	
 W	
 Wire	

No	
 overlap	

View	
 1	
 View	
 2	
 View	
 3	

Ti
m
e	

U	
 Wire	
 V	
 Wire	
 W	
 Wire	

Figure 8: Illustration of time-overlap condition for cluster and hit filtering. A similar condition also exists in
wire-space (although it is less easily drawn)

Before the loop over cluster combinations begins, for each cluster in each view, a lookup table is produced
which indexes the hits in each cluster by channel and view, similar in structure to the OrgHits table used
in the SeedFinderAlgorithm, which was described in 3.5.4. By passing pointers into this collection to the
track finding method, we avoid re-making the lookup table each time the same cluster is used. The OrgHits
tables used by SeedFinder and BezierTracker do not refer to similarly structured objects so separate tables
are maintained for each. There is room for further optimization here, but major code restructuring may be
required to bring both hit tables into the same format.

We then loop over all combinations for which at least one seed was found, and call the OrganizeSeedsIn-
toTracks method for each.

std::vector<std::vector< recob::Seed > > OrganizeSeedsIntoTracks(
std::vector<recob::Seed > & AllSeeds,
std::vector<art::PtrVector<recob::Hit>*>& AllHits,
std::vector<art::PtrVector<recob::Hit> >& WhichHitsPerSeed,
std::vector<std::vector< std::vector<int> >* >& OrgHits,
std::vector<std::vector<std::vector<int> > >& HitsWithTracks)

This method returns a vector of seed vectors, one for each proposed track. The collection of hits which are
associated with each proposed track are returned in the HitsWithTracks structure. This three level vector is
indexed first by the track ID (the index of the entry in the returned vector of seed vectors), then by view, and
at the lowest level is a vector of integers, each of which indicates a position of a hit in the supplied AllHits
PtrVector. To minimize repeated computational work we also supply the method with the list of hits which
are associated to each seed as produced by SeedFinder, WhichHitsPerSeed, and pointers to the hit lookup
table for each view, compiled into a single vector with 3 entries, OrgHits.

Within the OrganizeSeedsIntoTracks method, the overall approach will be to loop until we have exhausted
the seed collection, starting with the seed which is at one of end of the remaining collection and attempting

19

to chain other seeds which can make a consistent bezier track end to end. After each seed is added, both the
hits associated with that seed and those used in the interpolation from the previous seed are incorporated
into the track hit collection. After a seed is added to the track, each remaining seed is checked to see if it
has a significant fraction (defined by the OverlapCut parameter) of its hits already incorporated into a tack.
Any seeds which meet this condition will be removed from consideration for tracking. After a track is found,
all of its hits become unavailable for future interpolations.

The requirements for a seed to be joined onto a growing track are (refer to table 2 for seed geometry
definitions):

• SeedAngle between this seed and the last seed must be less than the TrackJoinAngle parameter

• ProjAngleDiscrepancy between this seed and the last seed must be less than the TrackJoinAngle
parameter

• PointingSign must be consistent between the last three seeds

• The occupancy of the extrapolation (see below) between the seeds must be larger than the OccupancyThresh
parameter in each view

If all these conditions are satisfied, the seed is added to the track and will be removed from future consid-
eration. If one or more is not satisfied, the seed is temporarily set aside but will be considered for the next
track.

The extrapolation condition is evaluated by producing a bezier curve between the two seeds and checking
every channel between the last occupied channel of seed 1 and the first occupied channel of seed 2 in each
view to see whether a hit exists within a distance defined by the TrackResolution parameter. The fraction
of channels which have activity within the track resolution of the extrapolated curve must be larger than
the OccupancyThresh parameter. If the last channel of seed 1 and the first channel of seed 2 are adjacent,
then the condition is automatically satisfied. First channel and last channel in this case refer to the channels
at the closest ends of the seed pair. This must be established consistently in all views, and as such at the
beginning of the run each seed has its first and last channels in each view identified and tabulated in the
SeedHighSChans and SeedLowSChans vectors in each view. The pointing direction of the seed match dictates
whether the first and last channels are sampled from the high S or low S end of each seed. After seed finding
is complete, any seeds which are running from high to low S in the track are flipped, so that in the final
bezier tracks the direction vector of each seed points in the same direction along the track.

After tracking is complete, tracks are sorted by length, and flipped such that all tracks point forward in
the z direction, as a convention, by the SortTracksByLength method.

4.5.5 Overlap Filtering and Track Joining

There are three methods for removing artifacts of imperfect clustering, and tracks which have been produced
as broken sections due to extraneous activity (eg delta rays) interfering with seed finding. The purpose of
each function is shown graphically in table 6.

The FilterOverlapTracks method takes a long track A, and searches for a shorter track B which has
both ends within TrackResolution of the A trajectory, and with both ends of the B having their closest
approach to A in the range 0 < SA < 1. If such an overlap is found, track B discarded.

The MakeOverlapJoins method seeks to connect tracks which run directly into each other, as can happen
when wide hits are improperly reconstructed giving two almost parallel track trajectories within a cluster.
The condition for connecting the two tracks is that end SA = 1 of track A must be within TrackResolution
of track B in the range 0 < SB < 1, and end SB = 0 of track B must be within TrackResolution of track
A in the range 0 < SA < 1. If such a pair of tracks is found, they are combined into a single track, with the
trajectory of A in the range {0, SA} followed by the trajectory of B in the range {SB , 1}.

The MakeDirectJoins method connects tracks which can be extended over short untracked regions. The
end directions must match to within TrackJoinAngle, and there is a distance cut of DirectJoinDistance
applied. The ends to be joined must be the closest pair of ends between the two tracks and be collinear

20

Method Before After

FilterOverlapTracks

MakeOverlapJoins

MakeDirectJoins

Table 6: Purpose of Overlap Filtering and Track Joining Methods

to within TrackResolution. If all these conditions are satisfied the two tracks may be connected into one
longer track.

4.5.6 Bezier Vertexing

After all tracks have been found, the BezierTrackerModule looks for 3D vertices which can be formed by
extrapolating each track. All pairs of tracks are extrapolated to find their impact parameters with respect
to one another from both ends. If any pair can be extrapolated less than VertexExtrapDistance and meet
with an impact parameter of less than VertexImpactThreshold then a vertex is placed at this 3D location.
Once a vertex is found, every other track is checked to see if it could originate from the same vertex. The
final vertex position is the average of the position given by every pair of vertexed tracks.

4.5.7 Bezier Calorimetry

Once the track trajectory has been established and the hits along the track have been identified, it is a rela-
tively simple operation to perform pitch-corrected calorimetry. The EDProducer Calorimetry/BezierCalorimetry
loops through all tracks in the events and accesses their associated hits. These hits are processed via the
BezierTrack::GetCalorimetryObject method, which finds the S position of each hit along the track, cal-
culates the local track pitch and applies the appropriate pitch correction. This method has been exploited
in previous MicroBooNE handscan exercises and its performance will be characterized in MCC 2.2.

5 Conclusions
This note has described the Seed Finding and Bezier Tracking algorithms. Seed finding is an effective way
of finding unambiguous sections in complicated events, and is likely to be a part of the 3D reconstruction
within LArSoft as a precursor to 3D tracking algorithms such as Track3DKalmanHit or BezierTracker. Bezier
tracking is one method of establishing the trajectories of long, curved tracks, and it appears to be effective for

21

a

D2	

D1	

a	
 <	
 VertexImpactThreshold	

D1,	
 D2	
 <	
 VertexExtrapDistance	

Figure 9: Bezier vertexing conditions

simple topologies such as cosmic ray muon tracks. It is likely that more complicated events will require more
advanced algorithms, and in particular, Seed Finding and Bezier Tracking are unlikely to be the appropriate
reconstruction technology for very low energy tracks, or complicated events such as electromagnetic showers.

Acknowledgements

Thanks to Herb Greenlee and Sowjanya Gollapini for the development of diagnostic tools to understand
the performance of these algorithms, and to the whole LArSoft team for helping to develop the ideas and
codebase upon which these algorithms are built.

22

