
JOBSUB
ARCHITECTURE

Parag Mhashilkar

JobSub Architecture

Last Updated: November 14, 2013

2

¨  Based on the input from -
¤  FIFE Architecture Committee Report: CS-doc-5180
¤  Meetings/Conversations

n  Authentication: Kevin Hill & Mine Altunay
n  CMS CRAB Framework: Eric Vaandering
n  Possible Cloud/Future Authentication mechanisms: Igor Sfiligoi

¤  Ssh & sshfs
n  https://indico.cern.ch/getFile.py/access?

contribId=322&sessionId=9&resId=0&materialId=poster&confId=214784
¤  New CRAB Analysis Framework

n  https://indico.cern.ch/contributionDisplay.py?
contribId=113&sessionId=5&confId=214784

¤  Non-Kerberos sshd not allowed (Old policy, still valid?)
n  http://www.fnal.gov/docs/strongauth/policy.html

Grid/Cloud Site

JobSub Server Machine

REST
Interface

JobSub: Client-Server Architecture

JobSub Server Machine

JobSub Client JobSub
Server

Web Framework
(httpd + CherryPy)

HTCondor
Scheduler

condor
submit

GlideinWMS

gl
id

ei
n

Query/Monitoring

Fu
tu

re

M
on

ito
rin

g

Last Updated: November 14, 2013

3

Data Dropbox

Data Store
Interface Storage

Custom Libraries

Job

Job

JobSub: Client-Server Architecture with
GlideinWMS Services

Last Updated: November 14, 2013

4

JobSub Server Machine

REST
Interface

JobSub Server Machine

JobSub Client JobSub Server
Web Framework

(httpd + CherryPy)
condor
submit

Query/Monitoring
Future
Monitoring

Data Dropbox

Data Store
Interface Storage

Custom
Libraries

HTCondor
Schedulers

Grid/Cloud Site

HTCondor
Schedulers

VO Frontend

HTCondor
Central Manager

GlideinWMS Factory

HTCondor-G

Virtual Machine Virtual Machine WN/VM

Glidein

HTCondor
Startd

Job

FIFEMON

NOTE: Data Dropbox feature will
be implemented in future releases.

Architecture Highlights

Last Updated: November 14, 2013

5

¨  Modular
¤ Components can be easily replaced/upgraded
¤ Central JobSub server:

n  Accepts requests using a well defined REST-Like API
n  Support for multiple client types

n  Command line (Only client supported by default in the beginning)
n  Browser
n  Portlet/App clients

n  Clients get changes faster with minimal need to update software

¨  Fault Tolerant
¤ Minimal dependency between the components

Architecture Highlights …

Last Updated: November 14, 2013

6

¨  Network Centric
¤  Thin Client

n  Requires minimal software on the client except python, curl, ssl (ci-
logon client if used)

n  REST APIs for communicating with the services
n  Can be installed on-site and off-site

¨  Scalable
¤  Services can be deployed in HA mode

n  LVS
n  HTTPD
n  HTCondor
n  Stateless JobSub Server
n  Storage interface with SQUID

Architecture: Alternatives

Last Updated: November 14, 2013

7

¨  Alternative 1: Thick client & Thin Server using curl+https
¤  Cons

n  Operational overhead with more services to install on the client
n  Upgrading services requires more coordination
n  Deployment may get complicated
n  Increases inter-dependency between services

¤  Pros
n  HTTPS is a industry standard
n  Forward looking and supports several authentication mechanisms
n  Does not require direct user accounts/login into the server machines (Operations group request)

¨  Alternative 2: Thick client & Thin Server using gsissh+gsisshd
¤  Cons

n  Same as Alternative 1
n  Client - Server communication locked into using x509 credentials
n  Requires direct user accounts/login into the server machines
n  Server requires gsisshd and to accept x509 credentials - Against computing policy (sshd must

support Kerberos only authentication)

Architecture: Alternatives …

Last Updated: November 14, 2013

8

¨  Alternative 3: Thin client & Thick Server using gsissh+gsisshd
¤  Cons

n  Client - Server communication locked into using x509 credentials
n  Server requires gsisshd and to accept x509 credentials - Against computing

policy (sshd must support Kerberos only authentication)
n  Requires direct user accounts/login into the server machines

¤  Pros
n  HTTPS is a industry standard
n  Forward looking and supports several authentication mechanisms
n  Does not require direct user accounts/login into the server machines

¨  Selected Design
¤  Pros of following schemes

n  Thin client
n  curl+https

High Level Tasks

High Level Tasks Phase Status
Prototype using Web framework (Using Django & CherryPy) 1 DONE

Design REST APIs & client-server communication protocol 1 In-Progress

Create plumbing code
•  Thin Client using curl
•  Web framework - server plumbing

1 In-Progress

Data Dropbox: To allow for custom input data & libraries
•  Understand the requirements
•  Design, develop & deploy

2 Not Started

Improve JobSub code maintainability
•  Change the server to make experiment settings configurable
•  Move to condor python bindings
•  Implement monitoring through web framework

1 & 2 In-Progress

Last Updated: November 14, 2013

9

