
Vertex finding update
Joshua Spitz
6/24/2010

1

The Harris corner detector*

*Motivated by U. Warwick group
CHarris and M. Stephens. A Combined Corner and Edge Detector. Proc. Alvey Vision Conf., Univ. Manchester, pp. 147-151, 1988.

A = w(x, y)
�

(∂x)2 (∂x)(∂y)
(∂x)(∂y) (∂y)2

�
H(x, y) = (∆x∆y)A

�
∆x

∆y

�

∆x=shift in x

w(x, y)=2D Gaussian weight

∂x=intensity variation in x direction

λ=eigenvalues of A

http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/Spatial/Docs/Harris/
http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/Spatial/Docs/Harris/

Recent upgrades to HarrisVertexFinder
• A Gaussian derivative is now used

instead of the Prewitt operator to
determine each pixel’s gradient,
necessary to determine cornerness.

Prewitt operator in x-direction

Gaussian derivative (σ=1, arbitrary
normalization) in x-direction

Low cornerness Low cornerness High cornerness

Sensitive to noise and not rotationally invariant!

~Cornerness

3

A = w(x, y)
�

(∂x)2 (∂x)(∂y)
(∂x)(∂y) (∂y)2

�

∂x ∼





−.0016 −.0065 0 .0065 .0016
−.0130 −.0547 0 .0547 .0130
−.0266 −.1109 0 .1109 .0266
−.0130 −.0547 0 .0547 .0130
−.0016 −.0065 0 .0065 .0016









0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
0 0 0 1 1









1 1 1 1 1
1 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0









0 0 1 1 1
0 0 1 1 1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0





∂x ∼
�
−1 0 1

�

More upgrades
• Non-maximal suppression added.

• If many potential vertices are found close to each
other, the vertex with the largest strength is kept
and the others are dismissed.

• Each “weak” vertex found with HarrisVertexFinder is
now given a quantitative vertex strength.

An example of many found
vertices close together. Non-
maximal suppression chooses
the strongest vertex to keep

within a user-specified window.

4

Manipulating the image to assist the algorithm in differentiating
one region from another is no longer necessary!

The Corner finding input

5

Recent upgrades to
VertexMatch

• VertexMatch takes those vertices found with
HarrisVertexFinder and attempts to match them to the
endpoints (within a window) of HoughLineFinder lines.

• Using two completely different methods to define a vertex
allows “true” vertices (event vertex, decay points) to be
differentiated from “false” ones (endpoints, delta rays, noise).

• If a vertex is matched to the endpoints of 2 or more Hough
lines, it is considered a “strong” vertex.

• The strongest “strong” vertex is found considering the
HarrisVertexFinder vertex strength and the sum of the length
of the Hough lines associated with the vertex.

6

Definitions

Strong vertex Weak vertex

Window around a hit
Harris-vertex
Hough-line

Window around endpoint of Hough-line

A Harris-vertex associated with the
endpoints of at least 2 Hough lines.

The strength of this vertex is given as
the sum of the length of the Hough lines

associated with it multiplied by the
Harris strength.

A Harris-vertex associated
with less than 2 Hough lines.

7

Strong vertex

Weak vertex

From my last talk

Endpoints missed

No non-maximal suppression

Endpoints missed

No non-maximal suppression

8

Strongest vertex
Strong vertex
Weak vertex

The upgraded vertex finder

Missed hit

Dead wire

Delta ray

No DBcluster

Strong vertex w/ the endpoints of 2
Hough lines associated with it

Text

Note that Hough lines and DBSCAN clusters are visible in the event display 9

HarrisVertexFinder
• A LArsoft module to find vertices from hits associated with

DBSCAN clusters.

• Relevant xml parameters:

• TimeBins, the number of time bins to use in pixelization.

• Gsigma, sigma of the Harris algorithm’s Gaussian window
and the sigma of the Gaussian derivative window.

• Window, the size of the non-maximal suppression window
(the time and wire units are made consistent) in wire/time.

• MaxCorners, maximum number of vertices to find (before
non-maximal suppression).

10

xml parameters for VertexMatch

• A LArSoft module to match hits, Hough line
crossings, and Harris vertices and define the
strength of a vertex.

• Relevant xml parameter:

• Maximum distance between a vertex and a line
to be considered a match.

Window around a hit
Harris-vertex
Hough-line

Window around endpoint of Hough-line

11

• Useful for:

• 3D matching and reconstruction.

• Seeding track fitting algorithms.

• Vertex activity characterization.

• Event filtering.

• Knowing if neutrino vertex is inside fiducial volume.12

Thank you

• Big thanks to B. Morgan at U. of Warwick for
comments/suggestions.

• B. Morgan,"Interest Point Detection for
Reconstruction in High Granularity Tracking
Detectors", 2010. arXiv:1006.3012v1 [physics.ins-det]

13

Backup

14

Vertex.h in RecoBase
 public:

 Vertex(); ///Default constructor
 Vertex(std::vector<const recob::Hit*> hits);
 ~Vertex();
 void SetDriftTime(double drifttime) {fDriftTime=drifttime;}
 void SetWire(int wire) {fWire=wire;}
 void SetID(int ID) {fID=ID;}
 void SetStrength(double Strength) {fStrength=Strength;}
 bool Add(const recob::Hit* hit);
 bool Remove(const recob::Hit* hit);
 bool Clear();
 std::vector<const recob::Hit*> Hits(int plane, int wire=-1) const;
 std::vector<const recob::Hit*> Hits(geo::View_t view=geo::kUnknown) const;
 double Charge(geo::View_t view=geo::kUnknown);
 geo::View_t View() { return fView; }
 double DriftTime() const {return fDriftTime; }
 int Wire() const {return fWire; }
 int ID() const {return fID; }
 double Strength() const {return fStrength; }

 private:
 double fDriftTime; ///vertex's drift time
 int fWire; ///vertex's wire number
 int fID; ///vertex's ID
 double fStrength; ///vertex's strength
 geo::View_t fView; ///view for this vertex, geo::3D if 3D
 TRefArray fHits; ///vector of hits for each plane

15

