Vertex finding update

Joshua Spitz
6/24/2010

The Harris corner detector®

| § K

A. Interior Region B. Edge C. Corner D. Isolated Pixel
Little curvature in any Little curvature along Large curvature in all Large curvature in all
direction edge, large curvature directions directions

perpendicular to edge

H(z,y) = (AzAy)A

0. (8:)(,)
A=vwl@ v\ 0,0, (0,

Ar=shift in x 0,=Iintensity variation in x direction

w(x,y)=2D Gaussian weight A=eigenvalues of A

*Motivated by U.Warwick group

Harris and M. Stephens. A Combined Corner and Edge Detector. Proc. Alvey Vision Conf., Univ. Manchester, pp. 147-151, 1988.

http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/Spatial/Docs/Harris/
http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/Spatial/Docs/Harris/

Recent upgrades to HarrisVertexFinder

0)2 ((9)(8)) (—.0016 —.0065 0 .0065 .0016]
A = w(z, (0 N 0130 - 0547
e (<ax><ay> B0) o | T b o e
—.0130 —.0547 0 .0547 .0130
~Cornerness _—.0016 —.0065 0 .0065 .0016_
0 0 O] 1 1 1 1 1 0 0]
0 0 0 1 1 1 1 1 0 0
0 0 [0 0 0 |0l 0 O 0 0 [1] 1 1
0 0 0 0 0 0 0 O 0 0 0 0 O
0 0 0) 00 0 0 0 00 0 0 0

A GaUSSian derivative IS how used Sensitive to noise and not rotationally invariant!
instead of the Prewitt operator to , I

. L . Prewitt operator in x-direction
determine each pixel’s gradient,

y | O, ~ (-1 0 1)
necessary to determine cornerness. Gaussian derivative (O=1, arbitrary

normalization) in x-direction

Low cornerness Low cornerness High cornerness
3

More upgrades

® Non-maximal suppression added.

® [f many potential vertices are found close to each
other, the vertex with the largest strength is kept
and the others are dismissed.

An example of many found
vertices close together. Non-
maximal suppression chooses
the strongest vertex to keep

within a user-specified window.

® Each “weak” vertex found with HarrisVertexFinder is
now given a quantitative vertex strength.

The Corner finding input

Step |. Raw data Step 2. Hits associated with
DBSCAN clusters

Step 3. Pixelized, binary hits Step 4. Pixelized hits w/ one-
sided Gaussian.shading

Manipulating the image to assist the algorithm in differentiating
5one region from another is no longer necessary!

Recent upgrades to
VertexMatch

VertexMatch takes those vertices found with
HarrisVertexFinder and attempts to match them to the
endpoints (within a window) of HoughLineFinder lines.

Using two completely different methods to define a vertex
allows “true” vertices (event vertex, decay points) to be
differentiated from “false” ones (endpoints, delta rays, noise).

If a vertex is matched to the endpoints of 2 or more Hough
lines, it is considered a “strong’ vertex.

The strongest “strong” vertex is found considering the
HarrisVertexFinder vertex strength and the sum of the length

of the Hough lines associated with the vertex.
6

Definitions

B Window around a hit

Harris-vertex
~ Hough-line

@ Window around endpoint of Hough-line

Strong vertex Weak vertex
o
A Harris-vertex associated with the A Harris-vertex associated
endpoints of at least 2 Hough lines. with less than 2 Hough lines.

The strength of this vertex is given as
the sum of the length of the Hough lines
associated with it multiplied by the
Harris strength.

From my last talk

® Strong vertex

® Weak vertex

lII||II|II||IIl|III||II|III|III‘|III|HI|

No non-maximal suppresslion
1 1

[I TR T T NN TR N O]
80 100 120 140
Induction Plane Wire

o

No non-maximal suppression
1 - 1 oa =l 4 1.1 L r
60 100 120 1
Collectic-_n Plane Wire

III|II||III[III|IIIILII‘I 'III|III|III|III|

|

The upgraded vertex finder

Weak vertex
Strong vertex

Strong vertex w/ the endpoints of 2
Hough lines associated with it

e ——— e @

Delta ray/)

140 160
Induction Plane Wire

}III’III’lll‘lll‘lll‘lll‘lll’lll

Dead wire

Missed hit

|

160
Collection Plane Wire

Note that Hough lines and DBSCAN clusters are visible in the event display

HarrisVertexFinder

® A LArsoft module to find vertices from hits associated with
DBSCAN clusters.

® Relevant xml parameters:

TimeBins, the number of time bins to use in pixelization.

Gsigma, sigma of the Harris algorithm’s Gaussian window
and the sigma of the Gaussian derivative window.

Window, the size of the non-maximal suppression window
(the time and wire units are made consistent) in wire/time.

MaxCorners, maximum number of vertices to find (before
non-maximal suppression).

xml parameters for VertexMatch

® A LArSoft module to match hits, Hough line
crossings, and Harris vertices and define the
strength of a vertex.

® Relevant xml parameter:

® Maximum distance between a vertex and a line
to be considered a match.

B Window around a hit

Harris-vertex
~ Hough-line

@ Window around endpoint of Hough-line

160
Induction Plane Wire

140 160
Collection Plane Wire

Useful for:

® 3D matching and reconstruction.
® Seeding track fitting algorithms.
® Vertex activity characterization.
® Event filtering.

® Knowing if neutrino vertex is inside fiducial volume.

Thank you

® Big thanks to B. Morgan at U. of Warwick for
comments/suggestions.

® B.Morgan,"Interest Point Detection for
Reconstruction in High Granularity Tracking

Detectors”, 2010. arXiv:1006.3012vI [physics.ins-det]

Backup

Vertex.h in RecoBase

public:

Vertex(); ///Default constructor

Vertex(std::vector<const recob::Hit*> hits);

~Vertex();

void SetDriftTime(double drifttime) {fDriftTime=drifttime;}
void SetWire(int wire) {fWire=wire;}

void SetlD(int ID) {fiD=1D;}

void SetStrength(double Strength) {fStrength=Strength;}
bool Add(const recob::Hit* hit);

bool Remove(const recob::Hit* hit);

bool Clear();

std::vector<const recob::Hit*> Hits(int plane, int wire=-1) const;
std::vector<const recob::Hit*> Hits(geo::View_t view=geo::kUnknown) const;
double Charge(geo::View_t view=geo::kUnknown);
geo:View_t View() { return fView; }

double DriftTime() const {return fDriftTime; }
int Wire() const {return fWire; }

int ID() const {return fID; }

double Strength() const {return fStrength; }
private:

double fDriftTime; ///vertex's drift time

int fWire; ///vertex's wire number

int fiD; /lIvertex's ID

double fStrength; /l/vertex's strength

geo::View_t fView; //Iview for this vertex, geo::3D if 3D
TRefArray fHits; ///vector of hits for each plane

|5

