USING GIT FOR
ENSTORE

DMD meeting

Alex Kulyavtsev
2/15/2013



-
What is git?

- git is distributed version control system

- written by Linus Torvalds for Linux kernel development
- allows easy management of large complex code base
- manipulates multiple code change streams

- large user base

- common code repositories like github

- integrated in many IDE, has GUI tools



Git Features

- git is offline and fast.
- Most of the time you access files on the local disk

- snapshot based, not changelogs like cvs

- git stores snapshot of the project when you commit the
change



Git Features

- local code management (think RCS)
- history
- branches
- remote repository access (think CVS, SVN)
- distributed collaboration
- all distributed repositories “are equal”
- remote branches can be accessed like local branches

- has familiar concepts:
- code repository
- working tree
- checkout, commit
- branches, tags
- status, diff, log (history)



Git Features

- git is fast and it is easy to switch to the different branch
and switch back or stash the work

- very easy manipulation of code in different branches to
accept changes to the files
- create new branch
- merge
- rebase
- git can store binary files

- now you can deleted that old empty directory, unlike the
CVS

- access rights: who can do what in each subtree



Enstore git on redmine

- Enstore git test subproject on Fermilabs’ Redmine
https://cdcvs.fnal.gov/redmine/projects/enstore-qgit-test

- Test drive for enstore code converted to git repository
- right now code is outdated on cdcvs, will be updated soon

- Repository contains imported enstore code with preserved
- branches
- modifications history
- browse, diff source tree
- Wiki has tips
- how to pull enstore code from enstore git repository
- links to git documentation




Repositories and Access

code is stored in git repositories

all repositories for the same project “are equal”

there is no “central repository” in git

but we all agree to have one repository as central repository to
keep production branch and other branches

test enstore repository is on on redmine server cdcvs.fnal.gov
We fetch or pull files from remote repository to local repository and
push files to the remote repository
access to remote directory through protocols like git,
http(s), ssh. URL looks like:
https://github.com/qit/qit.qgit
ssh://p-enstore-git-test@cdcvs.fnal.gov/cvs/projects/enstore-git-test
user@mysrv.fnal.gov:/opt/enstore-git-test/enstore.qit




Hashes

As we commit changes to repository few files are
changing

All unchanged files in repository refer to the same file
in .git subtree (through SHA hash)

Similar, only some files are changing when we change
branches

When we checkout previous revision, branch, pull code
from remote git checks hash and only few files are
updated therefore updates are fast.



Hashes

repository files are stored in Unix file system as files in .qgit
subtree

for each repository file the file SHA hash calculated and it
used as file name in repository (but there blobs)

there is index which maps files in working directory to the
hashed files in repository

instead of CVS file versions like 1.2 or 4.3.1.2 you may

see long hex numbers like for commit id
commit 7bd3a3bfe9d38da2c1283d331cl160be21cO8f1bb

you may type only 7-8 first hex digits when needed

normally you access file by tag or date, or ‘two revisions
before”



Creating git repository: create new

- Two ways to create local git repository

- create empty directory, initialize and put files
- mkdir myproj
- cd myproj
- git init
OR initialize git repository in existing tree:
- cd /opt/enstore
- git init
- In either case the new subdirectory .git is created by init

where git keeps its files:
- repository, index, and other files

- There are NO files in repository yet

- Unlike CVS or SVN, there are no extra files in each working
subdirectory

- maybe except .gitignore if you create it there



Staging area or Index

- git add is not the same as cvs add

- There is staging area (index) between working tree and
repository
- Saving files in local repository is two step process:

- git add “marks” files which need to be stored into repository
when you do next commit and stores them in staging area

- git commit stores ‘marked’ files into repository
- <<change file1 file2 file3>>
- git add file1 file2
- git commit —m “some changes”
- git add file3
- <<change file4>>
- git add file4
- git commit —m “more changes”



-
git add

- You need to do ‘git add’ each time you changed the file
and tell git you want to stage it

- There are shortcuts:
- If git tracks the file (you did “git add”)

- git commit -m "the test 2" -- test.txt

- o save all changed files, git does ‘add’ and then ‘commit’
- git commit —a —m “all my changes”
- beware you may commit some old change.



Some other Commands

- Now we have files in repository, try
- git help
- git help checkout
- man git-checkout

- git status
- git status —s
- git status —uno

- git log myfile
- git log —oneline
- git log —oneline —graph

- git diff myfile

- There are modifications of some of these commands to operate
files in cache, to access previous revisions of files



Branching

- $ git branch
* master

shows the current branch. “master” is the name of default branch created
when you initialized git
- Create new branch
$ git branch cdf test config
You're still at master. Change files and commit
$ git commit —am “commiting all changed files”
Switch to new branch
$ git checkout cdf test
Do some work, commit to test branch
$ emacs some_file
$ git commit —am “commiting all changes to test branch”
Get back to your default branch
$ git checkout master
$ git status



Branches, Tags

- When creting new branch you may want to switch to it
iImmediately:
git checkout -b newbranch
- Is the same as

git branch newbranch
git checkout newbranch

- Create annotated tag all files in current branch
gittag -a v1.0

Now you can refer to files in this snapshot by this tag



Remote Repositories

The other way to start work and create local repository is
to copy files from some other git remote (upstream)
repository.

$ git clone git://github.com/someuser/somerepo.git
You can check, set, remove alias for remote directory:

To simplify typing use aliases. Check remote alias defined
$ git remote —v
my-repo ssh://z.fnal.gov//opt/en.qit (fetch)
my-repo ssh://z.fnal.gov//opt/en.git (push)

Add new repository with alias “github”
git remote add en-srv mysrv.fnal.gov:/opt/enstore-git-test/enstore.qgit
git remote add en-cdsrv \
ssh://p-enstore-git-test@cdcvs.fnal.gov/cvs/projects/enstore-git-test e-g-t--git-clone
alias ‘origin’ is set as default name for the URL after you fetched files
from remote server, you can check URL with “git remote”



Remote Repositories

Get all branches from remote server to local repository,
but do not update working tree

git fetch en-cdsrv
git fetch <full-URL>

‘fetch’ copies files to local repository but does not change
work tree. To get these files you need to do merge

pull is equivalent of fetch + merge for the remote
branch with current branch, like “cvs checkout”

Publish code from local repository to remote
git push master branch_1 0
git push en-cdsrv my test branch



Remote Repositories

- remote branches used like local branches

- merge branch ‘production’ from remote repository
‘enstore’ to the current branch:
git merge enstore/production

- List changes on remote server since last update:
git log origin/master *master

- Update all branches from all remote repositories
git fetch --all



-
Links

- Intro
http://qitref.org

- Git visual cheat sheet:
http://ndpsoftware.com/qit-cheatsheet.html#loc=workspace:

Internals:
http://ftp.newartisans.com/pub/qit.from.bottom.up.pdf

- Enstore qit test subproject on Fermilabs’ Redmine
https://cdcvs.fnal.gov/redmine/projects/enstore-qgit-test




-]
Questions ?



