Scaling Small Files Aggregation feature up for
performance and capacity using cache clusters

Alexander Moibenko

High Level Design for using cache clusters to scale SFA for increasing number of user groups.

Table of Contents

CONFIGURATION WITH SINGLE CACHE SERVER (CURRENT PRODUCTION).

CONFIGURATION WITH MULTIPLE CACHE SERVERS.

Configuration with single cache server (current production).

There can be 4 types of different Enstore cache areas in the current SFA
implementation:
* Write cache - where files are written by disk movers.
* Packaging area - where files from write cache are packaged and packages get
written to tapes.
* Stage area - where packaged files get staged from tape.
* Read cache - where unpackaged files get stored for the disk movers read
access.
These areas are mounted on servers, hosting disk movers and migrators. The
packaging and unpackaging processes can run either on these same servers or on
remote servers (which usually are the servers providing storage for Enstore cache)
- aggregation and staging host. Currently this storage is accessed over NFS or
Lustre, but can be provided over any distributed FS. The corresponding entries in
disk mover and migrator configurations are specified as:

e Migrator:
o) 'data_area': write_cache_area,
o) 'archive_area': archive_area,
o 'stage_area': stage_area,
o 'tmp_stage_area': tmp_stage_area,
o 'aggregation_host': aggregation_host,
o 'staging_host'": staging_host,

(@)
* Disk mover:
o) 'device":write_cache_area,
o 'tmp_dir':'"%s/tmp'%(write_cache_area,),

Below is the current production SFA configuration.

Mover Host.
Imports Cache Areas

Migrator Host.
Imports Cache Areas

Storage Appliance.
NFS Server.
Packaging/Unpackaging Host.
Exports Cache Areas

Fig 1. Single cache server configuration.

Configuration with multiple cache servers.

The implementation of disk movers and migrators is such that it allows to have
more than one cache area served. There is a problem though - packaging and un-
packaging of files is done directly on cache servers for better performance. This also
can be done on migrator host over NAS. Currently we use NFS and performance of
these operations is much worse comparing with direct packaging and un-packaging.
The described design suggests to use cache clusters consisting of disk movers and
migrators grouped around a single enstore disk library and using cache provided by
single cache server (Fig 2).

Mover Host.
Imports Cache Areas Disk

Library 1

Migrator Host.
Imports Cache Areas

Storage Appliance.
NFS Server.
Packaging/Unpackaging
Host.

Exports Cache Areas

Mover Host.
Imports Cache Areas Disk

Library 2

Migrator Host.
Imports Cache Areas

Storage Appliance.
NFS Server 1.
Packaging/Unpackaging
Host.

Exports Cache Areas

Fig 2. Dual cache server configuration.

More cache servers can be added the same way.

To implement such clustered configuration the library must be added to several SFA
components. Below is a functional description of changes.

Write Requests.

As described in SFA HLD when file gets written into cache by disk mover file clerk
generates event “CACHE WRITTEN?”, this even is sent to dispatcher, which creates
and appends a file list based on the values returned by policy. Policy has the
information about disk library and was modified to return it. The modified file is
src/Imd_policy_selector.py (Done). The files then are grouped by dispatcher into
file lists to get written to a tape. Such list must also contain the information about
disk library. For this reason cache/messaging/file_list.py was modified to have disk
library as its property.

When file list gets full (according to the corresponding policy) it gets sent by
migration dispatcher into a queue in qpid messaging system. In current
implementation it is a single queue for all migrators. For the new implementation
gpid queues must be different for different cache clusters. To implement such
approach migration dispatcher will use qpid exchanges with routing keys.
Migrators will use queues named by the name of associated disk library provided in
their configurations. These queues will be bound to a migration dispatcher
exchange. Below is the illustration.

Migrator

routing
key=list.disk
_library

Disatcher

disk_library_2

Migrator

(|
]

Fig 3. Routing migration dispatcher requests to migrators.

Read requests

If requested file is not in disk cache the corresponding disk library sends
open_bitfile or open_bitfile_for_package request to file clerk. These file clerk
methods send CACHE_MISS events to dispatcher. To include the library name these
file clerk methods will be modified along with evt_cache_miss_t in pe_client.py

The rest is done as described in “Write requests” (Fig 3).

Purge requests

Purge requests also do not include disk libraries and will be modified to do so.
Currently purge requests are sent from migration dispatcher to purge migrators
over a separate qpid queue. The new implementation in such case would require to
have a separate exchange and queues associated with it for purge migrators just as
for write requests. It has been decided to take a different approach and use the same
exchange and migrator queues as for write requests (Fig 3).

Resolving migrator performance issues
One of migrator performance and functional issue is: when migrator issues encp
request it may wait for a very long time for completion of encp request. During this
time migrator does nothing. To partially resolve this problem the certain amount of
migrators per one node can be configured, but better approach is to dynamically
“create” a migrator as needed. In such approach only one migrator will be
configured per node. The new instance will be spawned as needed. The python
multiprocessing module will be used to implement this solution. Multiprocessing in
this case is better and easier to use then threading. Here are few reasons:

* processes run in separate name spaces which automatically resolves

possible conflicts with variables
* processes are scheduled by OS allowing for effective use of multi-CPU

The main process receives a message from migration dispatcher as described in
“Enstore Small Files Aggregation HLD”. It then checks how many processes were
spawned. If this number is more than maximum allowed migrator sends back status
message mt.FAILED. When migration dispatcher receives this message it re-sends it.
If mover decides to process received message it starts a separate thread running
method run_mw_request. This method starts the migration process running method
process_mw_request. This way of starting processes allows to easily monitor
execution of a process by a single thread. Processes communicate with “parent”
threads using internal queue. The advantage if queue is that it does not depend on
the content of data it transfers. The processes update their states using shared
dictionary.

Modifications

Nodes

New disk mover and migrator nodes need to mount a new cache areas.

Enstore configuration

* Leave only one migrator per node (it will dynamically spawn new migrators

if needed).

* Remove purging dispatcher (it is no more needed, dispatcher now does all

requests).

* Append the information to dispatcher indicating that it serves a clustered

cache: “clustered_configuration”: True

* Append disk library entries to old migrators: “disk_library”:

<DISK_LIBRARY>

* Optional migrator parameter: “max_process”: <integer number>

* Configure additional migrators for new migrator nodes

* Configure additional disk movers for new disk mover nodes (can be shared

with migrators).

Modules
The following modules will be modified.

Module Status %% completed
src/cache/messaging/pe_client.py Done 100
src/cache/messaging/file_list.py Done 100
src/cache/servers/dispatcher.py Done 100
src/cache/servers/migration_dispatcher.py | Done 100
src/cache/servers/migrator.py Done 100
src/file_clerk.py Done 100
src/lmd_policy_selector.py Done 100
src/purge_files.py Done 100

