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QCD in a nutshell



Quantum Chromodynamics (QCD)

established theory of the strong interaction
self-consistent relativistic quantum field theory

» two types of fields:

1) quark fields — basic constituents of hadrons
2) gluon fields — binding energy between quarks
e non-abelian gauge theory (Yang-Mills theory)

unlike electroweak interactions, no direct calculations of many QCD
phenomena by weak-coupling perturbation theory

— QED first principle prediction of spectacular accuracy

— many phenomena, e.g., the pion and proton bound states, are
non-perturbative and highly non-trivial

QCD is of utmost importance, e.g., most of the mass of ordinary
matter is due to the strong interaction



Key features of QCD

e Confinement:

 QED: electrons and photons exist in isolated single-particle states

* QCD: no states for isolated quarks and gluons
 Asymptotic Freedom:

« breakdown of electroweak theory (ultra-violet divergences)
» effective QCD coupling goes to zero at zero distance

— short-distance processes yield to perturbation theory

— correct renormalization of ultra-violet divergencies

— no breakdown of the theory



More Is different



The Reductionist Ideal
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The Theory of Everything

For experts we write
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The symbols Z«a and M« are the atomic number and mass of the
a'? nucleus, Ra is the location of this nucleus, e and m are the
electron charge and mass, r; is the location of the j'" electron, and
f 1s Planck’s constant.



Higher organizing principles -
Continuous Symmetry Breaking
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Higher organizing principles -
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- Measurements of the Hall voltage of a two-dimensional electreon gas, realized with a
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Hierarchical Structure of Science

e Symmetry is of great importance in physics.

 Internal structure of matter needs not be symmetrical even if the
total state of this is.

* The state of a really big system does not at all have the
symmetry of the laws which govern it; it usually has less
symmetry.

* Theory of things - emerging from its parent and involving into
into its children as the energy is lowered.



The inner structure of the nucleon

bound-state
QCD

Quarks spin =12

Approx.

Flavor Mass Electric

GeV/c2 charge

C charm 1.3 2/3

S strange 0.1 -1/3

Strong (color) spin =1

Mass Electric
GeV/c2  charge




The inner structure of the nucleon

 Mathematical proof of confinement included among the seven
Millennium Prize Problems in Mathematics.

 Exploring the nonperturbative regime:

o Lattice QCD: “Through difficult calculations of merciless
precision that call upon the full power of modern computer
technology, [...] they have demonstrated the origin of the
proton's mass [...]I believe this is one of the greatest
scientific achievements of all time.” (Frank Wilczek)

* Intense experimental studies of deep-inelastic scattering,
electron-positron annihilation and proton-proton collisions
(including Drell-Yan scattering).



Properties of the nucleon

property quarks
momentum ~50%

mass ~5%

charge valence quarks
|p> = |uud>
|n> = |ddu>

spin 30%
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Deep-inelastic lepton-nucleon scattering

\1 / /hadrons
)/ar'on

k'= (E'K)
Q2 = -(k-k")2 = 2EE'(1-cos6)
v=E-FE,y=v/E

x = Q?/(2Mv) = fraction of
nucleon's momentum P,
P carried by struck quark

nhucleon

k= (E, k)



Probing the inner structure

cross-section measurements 5 B 5
Fix,0%) = Se2 (f] (v.0%) +£] (v.0%))
i

; H1 and ZEUS
decomposed = : Q= 1.9 GeV?
— HERAPDF1.0
| I exp. uncert.
structure functions j B model uncert. xu, g8

- parametrization uncert.

process
dependent

interpreted I

Parton Distribution Functions

universal



TMD



Images of the proton

e partons within the nucleon:

e three position coordinates

e three momentum coordinates

 hard probe — longitudinal direction — transverse plane
* their state can be described by Wigner distributions:

e quantum phase space distribution

e quasi-probability density (uncertainty principle, not positive
definite)

e equivalent to parton’s complete wave function

» projections of Wigner distributions: PDF, TMD, GPD have
probabilistic interpretation
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Distributions in momentum space
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Flavor-dependence of TMD
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Distortion of distributions
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TMD factorization



The inner structure of the nucleon

Measurement:

Hadron

Nukleon

cross section

cross-section asymmetries

QCD analysis:

. A@ fragmentation

f - ®® confinement

factorization theorem




Leading-twist representation of
the nucleon structure

® description of the nucleon structure including p:

1 o N
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quark X and nucleon helicity A, transverse spins s and St of quarks and nucleons

* transverse-momentum-dependent PDF
w related to spin-orbit correlations
w constraints on orbital angular momentum (contributions)?

* naive-T-odd Sivers f.9 and Boer—Mulders /"¢ functions

w nitial- or final-state interactions / transverse SSA
w profound consequences on factorisation and universality



Leading-twist TMD

Proton goes out of the screen/ photon goes into the screen

—(J—} @ nucleon with transverse or longitudinal spin f IJ_T = @ - @
arton with transverse or longitudinal spin
P g P
h = -
|

parton transverse momentum

i @
e
hf_L: =
e

hi _
[courtesy of A. Bacchetta] 1T



Transverse SSA



Transverse Single-spin Asymmetries

* Observation of single-spin asymmetries:

E581/E704 (ptp — hX) : HERMES (lp= — I'hX) :
008 -
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PLB261, 201—206, 1991 PRL84, 4047-4051, 2000

® Global analysis of:

transverse-momentum-dependent PDF




The Sivers mechanism

* Sivers function fi. (z, pr?): NTq! — N4l

* orbital angular momentum of quarks:

ux (o bi)
:jj @ || -
g

* final-state interaction:
left-right asymmetry of quark distribution

w |eft-right-asymmetry of momentum distribution of hadrons

* structure function: Fyp = —C [ ~ fiz (z,p7?) D1 (2, ZQsz)] (26



Fourier decomposition of TSSA

Measurement of azimuthal single-spin asymetries Ayr(¢,¢ s):

do

sin (p—¢g)
... sin 3
dx dy dps dzd¢p dP3? | (¢=¢s) Fyrr

Py, = z(pr — k1)

+sin(¢+¢s) F

Sivers mechanism:

Collins mechanism:

sin (¢ — ¢s)
sin(¢+ ¢s)

pEin@+9s)
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The Sivers TMD



The Sivers function

transverse-momentum dependent PDF:
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rather exotic in being naive-time-reversal-odd
< initial (Drell-Yan) and final state (SIDIS) interactions
— single-spin asymmetries:

ARY ~ fi29(x) ® fl(zs), Aur ~ fi7%(z) ® D1(2)

close relationship to quark orbital angular momentum

challenging the concept of factorization and universality
 fundamental QCD prediction: flJ'TiDIS = — lJ'TiDY
 remains to be experimentally tested

e polarized Drell-Yan measurement required



T-even and naive T-odd

T and naive-T are defined as operators on certain objects, e.g. a Lagrangian
density or a scattering amplitude.

T invariance means that the QCD Lagrangian density is invariant undera T
operator. This implies that the scattering amplitude(A -> BC) is equal to the
scattering amplitude(B'C' -> A'"). Here, the ' refers to an reversal of spin and
momentum directions.

The naive-T operator reverses the spin and momentum directions of
particles. Thus, you read in the literature that T-odd is T without interchange
of initial and final states. Naive-T-odd implies that the scattering amplitude(A
-> BC) is minus equal the scattering ampltidude(A' -> B'C').

naive-T-odd cross-section contributions are build from T-even scattering
amplitudes requiring either an interference between two amplitudes where at
least one of them has an imaginary part or involves a spin flip.

The concept of naive-T-odd is used to mark functions with the property to
explain SSA in hard scattering processes.

naive-T-odd is not related to a symmetry (like T) of QCD or another theory.



Global analysis of the
Sivers TMD



[ [ Fundamental processes
SIDIS Factorization: do ~ Z 33 fEIH} (JC) Dgr (Z)
q

e Disentangle distribution (f) and fragmentation (D)
functions — measure all process

H J; " Disentangle quark flavours q — measure as many
hadron species H,h as possible
[T ee hl H| Drell-Yan ]+
— l —
/ h 1,
2



4 | Fundamental processes

2 e(H) h’ Spin
e, fq '(x) Dy P
SIDIS Z ( Programs

H Drell-Yan
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Drell-Yan

The Missing
Spin Program

Y &tV (n) fy? (x)
q A

W production |
P <« ©® C|ean access to sea quarks

€9 Au(x),Ad(x) at RHIC

® Crucial test of TMD formalism
— sign change of T-odd functions

® A complete spin program requires
H multiple hadron species
— nucleon & meson beams

AR @

PH . ENIX



Global interest in polarized DY
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E-906/SeaQuest at Fermilab

fixed-target Drell-Yan experiment

target unlque access to sea quarks at high-x

~ Main Injector \\,
120 GeV

2013 — 2015: weII-understod experiment by 2015
E-1027 - upgrade with polarized beam

sensitive to beam valence quarks at high-x

— large effects — size / shape of Sivers TMD



Reestablishing spin at Fermilab

Recycler Ring {above MI)

Polarized Snurce

e . Spin Rotator _ Polarimeter RFQ’s
MI Snalé Polarimeters
F: » / e = Sources
RR S ' 7 \_Switching
8.9 GeV/c Magnet
i 400 MeV Linac

Booster

Fast Uncalibrated and CNI
Polarimeters with Hp Jet Target j

Pulsed Quads ?
TS~_Partial Snake

120 GeV/c Main Injector

SeaQuest

Beamline CNI Polarimeter Fast Polarimeter

75% polarization @



P-1027 - Predictions
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*

The global investigation of the
nucleon s quark- gluon strqctur,e
s an interesting, field of °
perturbatlve QCD

TMDs challenge the concepts
of universality and factorization.

Polarized HDrell-Yan“measurements are
the missing=compohent in the
global TMD analysis.
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