Eeature Vertex Finder

A “new’” way. of finding verticies in LArSoft //“"

™
:,;::—‘Fj}:;--
= Jonathan Asaadi
A Syracuse University
LASOTt Vieeting
9/19/15
:-—-:-___‘_...—:'_
N
'”'_“_—D?-—-:—-_:-.___,_-;:‘_t.r___ __————

L;;’—-’ H

ey ArgoNeuT MG

JonathanAsaadi Syracuse University,

» Vertex finding in the broader reconstruction scheme

- How we do it now
- How | imagine it could be

 Proposal to change RecoBase Vertex object
- Adding vertex “strength” to the Vertex object
 FeatureVertexFinder (/ don't do well naming things)

- How it works (a.k.a building on the hard work of others)

e Cluster Finding
e Corner Finding
« 2d/ 3d matching

- Preliminary performance plots (still lots of improvements to be made)
- Some plots using vertex strength to show performance

 Backup Slides
(more details about the algorithm than can fit in one talk)

JonathanfAsaadi Syracuse: University, 2

Reconstructlon

Tracks

| Wires |
Calibraced Data

(Part of what is described below is a cheat and an over-simplification...but is more used to illustrate
my point that if we use information differently we can improve our reconstruction)

Right now, in LArSoft, we follow a very linear chain of reconstruction with
one module calling upon a previous module (or maybe a few previous
modules) to reconstruct the next object that gets passed up the chain

An event vertex is reconstructed very late in the chain (mostly taking in
3d objects) and is seldom (if ever) used to inform other reconstruction

Jonathan Asaadi Syracuse University

Reconstruction

HewiNmagineNicolaine

Raw Data 2% Wires & Hfts m Vertek
Calibrated Data
Image Techniques %h owers

| would like to propose a more “feedback Reconstructed
loop” approach to our reconstruction and / oplect
illustrate this through the new vertex 1

algorithm, FeatureVertexFinder. Proto-0bject Reco Attempt

R~

Specifically, | think many algorithms (clustering, track finding,
shower finding) would benefit greatly from having a list of vertex
candidates (“proto-verticies’”) with various weights assigned to
them

These verticies would help them make intelligent guesses about
the object they are attempting to reconstruct

Jonathan Asaadi Syracuse University

Reconstruction

HewiNmagineNicolaine

Wires Proto-Vertexing
Calibrated Data Clusters |gud Produces a list of 2d

& 3d candidates

Pass 1 Image Techniques]
- CornerFinder Tracks
Could use more...? Showers

—>» = simple feed forward technique (like we do now) etc...

— = new link in the chain (i.e. FeatureVertexFinder) Most of this
—p> = feed back to previous algorithms talk will .
, _] focus on this
B = Existing algorithm I haven't done this yet...just new
thinking out loud module

. = New algorithm

During our first pass we make simple objects based on available information.
However, since many of these object made during the first pass can
inform/improve reconstruction algorithms, we identify those links and re-run
reconstruction using this information

Better Hits Refine Clusters

(e.g. Hits near a vertex may need to be handled differently) (e.g. Clusters that know where the origin may be as input)

JonathanrAsaadi Syracuse University,

namespace recob {

class Vertex {
public:

Vertex(): // Default constructor

private:
double fXYZ[3]: fff< location of vertex
int fID: fff< id number for vertex

#ifndef _ GCOXML__

public:
explicit Vertex({double *xyz,
int id=util: :kBogusI);
void XYZ(double *xyz) const;
const int ID({) const;

double strength() const;

As of right now the only 3d vertex class
in LArSoft only has XYZ and ID as
members of its class

| would like to add “strength” to this class

— | could see this having the vertex
strength defined for each module that
generates 3d verticies (would be up to
the author to tell everyone the scale and
what it means)

— For FeatureVertexFinder | would use
the same definition | outlined later based
on matches and merges (+ tweaks &
suggestions from others)

Jonathan Asaadi

Syracuse University,

Eeature Vertex Eindex

Easiest method is to show how module works is to step through an example MC event

Step 1: Start with a wire information Step 2: Run the event through a generic
reconstruction chain up to

2-d clusters (keep CalWire)

v+ Ar-u+3p+n’ +x°

P e Note:
Ph These are
,:%, et st o B just 2-d
: Cluster
\ modules

ArgoNeuT MC
What | am showing here are reconstructed
hits and the 2d-Clusters from LineMerger
— In principal you could have used any
2-d cluster module

HitFinder (GausHitFinder)

2-d Cluster (dbCluster)

2-d LineFinding (HoughLineFinder)

2-d LineFinding (LineMerger)

: v+ Ar->u+3p+n’ +x°
= \
- oy o

— | chose linemerger because it seemed
to give me sensible clusters for finding
a vertex
At this point in the reco chain | run
FeatureVertexFinder

\ ArgoNeuT MC

JonathanrAsaadi Syracuse University,

Eeature Vertex Eindex

V+Ardu+3p+a 4 At this point FeatureVertexFinder looks at the event in
l*ii._= two ways

(Method 1) 2d/3d Cluster Vertex

S - Using the 2d-cluster information and calculating slopes and
e Intercepts in 2d and then matching between planes to form
\ 3D candidates

(Method 2) 2d/3d Corner Vertex

- 2d “Corner” finding using ConerFindingAlg and matching
Between planes to form 3d candidates

ArgoNeulr VIC

ArgoNeuT MC s
I'll talk
p e about eac
ffarats way
v : individual
Cluster vertex

JonathanrAsaadi Syracuse University,

Eeature Vertex Einder

20 SIGPES

* For every cluster | take the
S hits for that cluster and fit a
_.;L*’ : 1st order polynomial to the
~—— hits (pol1) and save the slope
\ - | use a fit instead of the reco
s cluster slope (dTdW = delta Time

/ delta Wire) because not every
cluster module calculates this

S * | also save the start and end
T~ position (wire and time) for

\ each cluster
| do this since | expect the

Eragheuiing clustering algorithms (at this
point) to get the actual start and
end position switched sometimes

Now | search for 2-d cluster vertex candidates in each plane

Jonathan Asaadi Syracuse University, 9

Eeature Vertex Einder

20 SIGPES

Cartoon representation of the

Cartoon representation of the

L

i) 2 method... (s method...

/ ~"-'t-...\~ \\
'l \ \
\\ o
___________________________ ; "
v
LS
-4
_____________ SRR fods
. ArgoNeuT MC

~

(1) Using the slope and the.start point of each cluster | calculate all the
intersection points in each plane between all the lines
(I also repeat this procudure using the end points)

Greater details in the backup slides...
Now with a long list of 2-d cluster vertex candidates (wire & time) in
each plane | look for 3-d cluster vertex candidates

Jonathan Asaadi Syracuse University

10

Eeature Vertex Einder

Viaichingienveenviews

Cartoon representation of the
method...

ArgoNeuT MC

Zooming in on one view

-

=

Real output of
FeatureVertexFinder_

-"-_ —==" But we

———_______ aren't
done

yet!

(2) Loop over each 2-d cluster vertex
candidates (channel, and time) and look to

see if there is a corresponding cluster
vertex candidate (channel, and time,) In a

different plane and see if the channels

Intersect (Channelsintersect(C1,C2,Y,2)).
This gives me a' Y and Z coordinate

Finally | require that the time difference
between the two vertex candidates
(abs(time -time_)) IS Within 1.5 times the

expected offset between planes
(TimeOffsetV, TimeOffsetU, TimeOffsetZ)

If the vertex satisfies both these
conditions (Channelsintersect and 1.5TimeOffset),

then calculate the vertex X coordinate
(TickstoX)

So now | have a list of 2d/3d cluster
verticies

Eeature Vertex Einder

Verex:Sirenaiti

Recall that | have done this
process for both startpoints and

A —————— _endpoints for every cluster
=_1= — This means | have to do some

bookkeeping to make sure | remove
duplicate entries (details in the backups)

- Now | need to assess how strong
— — — of a candidate each found 3d/2d
- - — vertex found

Real output of
FeatureVertexFinder

To do this | come back to the
image techniques employed in
CornerFinderAlg

Jonathan Asaadi Syracuse University

Eeature Vertex Einder

@omerEinader

Lots more details about the CornerFinder have been given by W. Ketchum and can be found
https://cdcvs.fnal.gov/redmine/attachments/download/9953/CornerFinderintro.pdf &
https://indico.fnal.gov/getFile.py/access?contribld=1&resld=0&materialld=slides &confld=6845
and another example of it being used by B. Jones for tracks can be found
https://indico.fnal.gov/getFile.py/access?contribld=3&resld=0&materialld=slides &confld=6845

. . Cartoon representation of
®
sing the Image - the:method...

techniques
described
elsewhere (see
back-up slides) |
find the 2-d
corner features”
in each plane

This technique finds lots of 2d corner points (wire & time) in each plane

Now | loop over all the corner points in each plane and similar to before keep

only the corner points that match in Wire and Time
(note: I also record the 3d matched corner points strength as defined by the CornerFinderAlg...this is
important for later)

This gives me a list of 2d/3d corner vertices (X, y, z)

Jonathan Asaadi Syracuse University

https://cdcvs.fnal.gov/redmine/attachments/download/9953/CornerFinderIntro.pdf
https://indico.fnal.gov/getFile.py/access?contribId=1&resId=0&materialId=slides&confId=6845
https://indico.fnal.gov/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=6845

Eeature Vertex Einder

AllalereiiWeNIsts

‘ €F ’Ij;‘;: i
2d/3d Corner
Verticies

Now what | have is two lists of 2d/3d vertex candidates (corners
and clusters) found from two different methods

What comes next depends on the length of the cluster vertex list and the proximity
in 3d space (X, y, z in cm) to the verticies from the corner vertex lists

Nitty gritty details can be
found in the back-up slides,
but everything follows this
rough prescription

Jonathan Asaadi Syracuse University,

Eeature Vertex Einder

AllalereitiveNsts
6) All vertex candidates start with a strength equal to zero

1) Loop over the cluster vertex list and merge a 3d vertex that is
within 0.5 cm ¢new) of another vertex in x, y, and z (has to satisfy all

three spatial directions)

— When you merge two vertex candidates +1 to the vertex strength
. — Merging right now is the dumb (m+n)/2...needs to be improved

(2) Take the merged cluster vertex list and compare it to the corner
¢/ vertex list.

‘F — If there is a corner vertex within 1 cm (*new) in X, y, z of the cluster vertex add +1 to
the strength
2d/3d Corner — | do not merge these vertex candidates...l just use them to add weight to the found

VEHEES L oluSIEr YCrIOX ot ug e since last wask now hasth irength rportng“reasonable” numbers.

3a) If you have > 0 vertex candidates, record all of them
— EndPoint2d (TimeTick, geo::WirelD, strength, Vix #, View, Total Charge not used)
— Vertex (xyz, Vix #)

3b) If you have exactly 0 vertex candidates use a bail/recover

method Nitty gritty details can be found in the back-up slides,
—» More on the next slide but everything follows this rough prescription

JonathanrAsaadi Syracuse University.

Eeature Vertex Einder

Ballout

So if somehow after looking for a cluster vertex and/or a corner
vertex we still haven't found at least one 3d proto-vertex we employ

m a series of bail out tactics

Note: All these verticies will have strength 0 or 1

Help plz!
/

Bail Out Strategy 1:

Take the start point and end point of the =g ———
longest cluster in each plane and tryto
match this 2d point to a corresponding
3d corner point projected down into the E - /
plane (if it matches to many 3d feature ;=

points use the strongest 3d feature N
point). e ————

— If you find a match take the strongest e ///;;—fk :

2]
)
=

i

point and construct a 2d/3d proto-vertex from f.
the 3d feature point (this way | can haveapoint E.. gy T
in all planes that is consistent) strength 1 e

JonathanrAsaadi Syracuse University.

Eeature Vertex Einder

Ballout

Bail Out Strategy 2 (only used if
strategy 1 fails):
Take the strongest 3d feature point found
and project it down into 2d

— Take this point and construct a
2d/3d proto-vertex strength 0

Bail Out Strategy 3 (only used if
strategy 1 & 2 fails):

Take the start point of the longest r Pa—]
cluster in each plane as the 2d vertex S I |
(regardless of if they match between E I
views) E E
— Use geometry to find the nearest e ER

3d point between the planes strength 0 o -m s —

How well does FeatureVertexFinder do?
— Look at 400 Genie events generated in ArgoNeuT
- Reconstructed: GausHitFinder — dBCluster—HoughLineFinder—LineMerger

— First look at all reconstructed vertex candidates created
- Some good stuff...lots of interesting noise

— Then look to see what happens as we increase the strength of
the 2d vertex reconstructed

JonathanrAsaadi Syracuse University.

Preliminary. Performance Plots

All'reconstructed verticies | T Kpn XA

TwoD Number of Verticies Found in Plane 0 Mean 2.248

RMS 4.671
- TT | LI | TT 1T | LI | LI | L | LI | LI | T T TT | LI L = 02_ |
o — fTwoDNVixPlane0 | E E
Remember that this is for JEZEIEIE 8
all reconstructed vertex vy
107 - . 64 | |
: candidates] e =
i (~ 8.5 candidates per . -
I event for this sample) ’ L E
10 ‘ 1 -20 ‘ ‘ -40 — -20 — 0 — 20 40 ‘ SB
= A X (em)
E Reco Y Position - True Y Postion
| fRecoCheck3dVixY
] i T T T T T T T T T T T T T T T T Enries. 4082
Mean 0.2755
i 100 RMS 10.7
14 . -]
A 1NN :]
0 10 20 30 40 50 60 70 80 90 100 10l H
TwoD Strength Plane 0 i]
C T | T T T T | T T T T | T T T T | T T T T |] 1= _
5 fTwoDStrengthPlaneld |] E 3
a Entries 4082 | - e] B "%
Mean 0.7049 AY {om)
10° H RMS 1462 | 5 Reco Z Position - True Z Postion
0 A J F AN BN N RN RN SR SN BN
H — fRecoCheck3dVixZ
H [| 102 = Entries 4082 |
E Mean 11.65 |
10° 5 _ — C RMS 18.69 |
B =] 10 =
10 HH — E =
HMM 11111 R S
g Ll =]
0 5 15 2 i

=]

10 0

el
wm
w
o

JonathanrAsaadi Syracuse University.

X offset because | need to
handle ArgoNeuT's trigger
offset properly still

For this sample of 400
events (low statistics):

| reconstruct a vertex
within 1 cm in wire
distance and time tick
(converted to cm) of
the true vertex in both
planes ~70% of the
time

| reconstruct a 3d
vertex within 1 cm in
X,Y,and z
simultaneously of the
true vertex only 60%
of the time (my
resolutionin Y and Z
seem to really lower
my efficiency)

Prelimina

All reconstructed verticies
Delta X vs Delta Y

ormance Plots

Delta X vs Delta Y

fRacoChack 3dWiKvsId VY

. . . . ; ; ; ; . : . . fRacoChack3dWiavs3dWEY Er'ltries 4082
B ' ' ' Entries 4082 10 Mean x 0.09567
a0l— Meanx 0.2755 Mean y 2.027
L . gaﬂsn y 2-3;? RMS x 5172
i X . RMS y 2.509
. . RMS 4.671
L o~ - y 5
20—
£ I oming in & _
< O LS - - P o
5k < I - > T P ol
- - & Y * * @
_ i il e vt rg";“.@?.:“ :;“b T
20— . — |+ * . N * “Q > % :‘3 :‘ % -
L . . 4 S—+ * - - by :‘ - * Padh A
& - - -
B 7] B - &, e |
- - - * - -
L . * - - +»*2 i
20— — B - * . =, . o9
i 1 | 1 1 1 I 1 1 1 | 1 1 1 ’l 1 1 | 1] ‘10 _ ’ ‘ ‘ * ‘]
1 1 | 1 * 1 1 | 1 ES 1 1 ‘l 1 1 1 I¢ | 1 1 ‘I 1 |
-40 -20 0 20 40
AY (em) -10 - 0 5 10
AY (cm)
(Reco X - True X)/True X vs True X (Reco X - True X)/True X vs True X
— ——— ——— Y Y — fRecoCheck3dVitxXveX 5 fRecoCheck3dvicivaX_pfx
i ' ' ' ' Entries 4082 E | Entries 4063
B Mean x 27.97 n E Mean 27.95
4 Mean y 0.199 C Meany 0.1982
| RMS x 11.19 3:_ RMS 1117
= RMS vy 0.4229 - J RMS y 0.4215
2 — 2=
N | > =
> - - g 1= H
e L - [= ST L1 - . :
E ol— 1 ; D:— ol =t - . [T TRy, AL UL P
x I 7] 2 E
a | - g 1
| _| o _—
2 . 1 = c:
2 . 2F
- Profile E
4 = =
[- 4=
T | | | I T — | | I — | L1 1 1 | L1 1 1 | 11 I 1 1 T -5 :I [1 1 1 | L1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 L1 | 1
0 10 20 30 40 50 0 10 20 30 40 50
True X {cm) True X (cm)

Jonathan Asaadi

Prelimina

Performance Plots

Delta X vs Delta Z

fRacoChackIdvbolvs3d e
Delta X vs Delta Z 3 13 | | Entrios 4082
T T I T T T T T T | T T T | T T T | T T T mcuc‘ha:kmvmvsad\ﬂﬂ : Mean ?(3-724
r Entries 4082 - . - . |Meany 2.208
20— Mean x 11.69 15— . Lt . . RMS x 7 157
| Mean y 2.268 - " " . " RMS 2
i RMS x 18.41 C . WS y 999
i . . - |RMSy 4586 0=
20— -
L S
— ,‘.,: < E =,
T L s, . . & -
s oL . ooming inx O
> L < :
< C
L -5
20 7 7| =
i - 15 : =
40— — - . -
J_ 1 i I 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 |_ ‘20 :_ _:
-80 -850 40 20 0 20 40 80 80 bl e b e e P by by |
AZ(cm) -20 -15 -10 5 z?) 5 10 15 20
AZ(em
(Reco Z - True Z)/True Z vs True Z (Reco Z - True Z)/True Z vs True Z
T T T T T T T T T T T T T T T T fRECOChECkadVb:ZVEZ 5 [— ' ' ' | ' T ' | ' ' ' | ' T T | T T ' fRemcihacmuivszjh(
10— I I I I I Entries 4082 - Entries 4004
B Meanx 43.11 4 Mean 43.15
B Mean y 0.474 — Meany 0.4764
B RMS x 23.5 = RMS 23.37
N _ 2F- =
— _ N E T .,E TTlT: TT I E
N 7 R S E Lo THD ANsd] —
g B — [= = B T & s L e, s 3
= - [. o Dot 25 Tt -
Y — N o IR g S : =
= - - *é = .. ot J
< ™ 7 & _q B
- — [ik] = —
B _ = — -
-5 ; 25 =
- Profile = =
i 3> =
10— — =y E
| | | | | | 1 | 1 | | 1 | | 1 | 1 | | 1 | | | 1 | | — —
0 20 40 B0 80 100 120 5C Lo o o e b o b e o
True Z (cm) 0 20 40 True 7 cn?o 80 100

Jonathan Asaadi

Syracuse:University.

AY {cm}

AY/TrueY

ormance Plots

Delta Y vs Delta Z

fRacoCheck3dVixveddVinZ T % il T T fRacaChackIdvibfvsadixz
40 :|_ T L LA L B Y L L B B I L B T T Entries 2082 o ; L . o 4] | + I * ™ I *4:‘ ¥ Entries 4082
= . . Mean x 11.71 - - - Meanx 3.447
- ' Meany 0.2825 - Meany 0.7477
0 RMSx 184 15— .. RMSx 6.856
- { 10,69 = .. RMSy 747
20 E_ 4 10 ;T) - ’.5‘::,:?:—’%
C — - Pt
10 - . A . . __g 5 C "*“' J‘;"‘—.r_
- = % e
oF amingin & E - RIS
g L0 3 - — ’: - - - hd :‘
C : ~ - &‘“:t%‘.ﬁg
=10 — + + -5 — . - - :4- =
- R v . - - ve* . =
20— IR S —] 10— . - 1,4“—:
- P n - - .
=30 :— " ’ ';»' —: 15 2_ - - * .
= —_ = - .¢': ‘:
— 1 = - - - - -]
-4D—|_| | T T T I T T T T t ‘20|_| T |¢LTT Lol |-| L S B R T BT I.I- |“'|ﬁ"¢|ﬁ"| L% f'r_
-80 -B0 -40 =20 0 20 40 60 80 -20 -15 -10 -5 0 5 10 15 20
A Z (em) A Z (cm)
(Reco Y - True Y)/True Y vs True Y (Reco Y - True Y)/True Y vs True Y
53 fRecoCheck3dVixYvsY S T T I T T LI B I R T T T T T T L T T T T fF{am(ihacka-dleWsY_prx
[T | T T T | T T T T | T T T T | T T T T Entries 4032 E Entnes 4061
B Mean x -0.09023 4 Mean -0.09117
B Meany 0.02109 = Meany 0.01966
i RMSx 10.64 = RMS 10.64
- - |[RMSy 07284 = RMSy 07227
[] 2F- =
2 | — > - -
@ — —
| _ 1=]
B] E = s o3 o srimr BilE .
0 [] > o . ;'_L .o -
» | < = e R EE -
B — & 1 = 4T =
2 — - - =
B . 2F =
- Profile - =
A — 3 :_ _:
B N 4 -
-6 _I | | | | | 1 | | | | | | | | | | | | | | | | | _I E E
20 10 10 20 sE1L 11 I T T N [N T Y TN T TN SO M T A N SO N Lo T

Preliminany Performance Plots

Reco Wire in CM - True Wire in CM Plane 0 Reco Time in CM - True Time in CM Plane 0
T T 17T T T 17T T T 1T T T 17T L LI T T 1T T T 17T T T TRecnCheck2dWireinCmPiansa TRecoCheck2dTimelnCmPlaned
E | | | | | | | | Entries 4082 103 __I LAY L I L Y L Entries 4082
- Mean 8.258 8 Mean 0.4238
B RMS 14.22 - RMS 4.581
107 = -
= - 107 — =
10 i 10} —
: ‘ |H |||||||||||||||||||||||||||||||||: T R E
-50 40 30 20 -0 O 10 20 30 40 50 -50 -40 -30 -20 -10 0 10 20 30 40 50
A Wire (cm) A Time (cm)
Reco Wire in CM - True Wire in CM Plane 1 . . .
Reco Time in CM - True Time in CM Plane 1
TRecoChack2d\Wire InC mFiane1
EI t | T I rrrT | trrT I T | T I rrrT | trrT | Y Eﬁtl‘ieS 4082 L L T TT L L LI LI LI L T {RecnCheck2dTimelnCmPiane 1
- Mean 8422 10 ! ! ! ! ' ! " TEntries 4082
= RMS 14.3 - Mean -0.05726
B [~ RMS 4.493
107 — — - _]
- 3 10° = =
10 |— i]
= 10 =
1]
- 1 — -
[NN A A NN RSN SO AN B SVEN N AN A A A N A AN — |||||| =
=50 =40 =30 =20 =10 0 10 50 [' S NI A I L I .
A Wire (cm) 50 40 -30 20 -10 0 10 20 30 40 50

A Time {cm)

JonathanrAsaadi Syracuse University,

17} 18} 158} 2%} 11 il 23
T T T T T T T
T —
ail— —
B} — —
B =
I.‘IIII:— k—-’/’— _:
s —_— —
........ 5.............................*ﬂ-—_‘—” 3
Al — \‘...'-."" —
= i —
- | L\“i' T TR T N N TN AN T | 1 | I
e L e e e e e e
H— —
T —
i —
E #—-—< E
s —
,,,,,,,,, Frvccscevcscesesvesessesesesnesessssessess 3
A0 — = —]

=
Wy 2 GeNe| + Ar — B[R GeWe] 4 T O Getie] + T 20| P S GV

It's true that we do find the

primary vertex in nice simple

events like this one

iy

L5ty

{L1E)

L

iy

L5iy

{L1E)

L

i
L}

2

@a/\a aweg
| 1111 |

150

Illllllllllr—

HEH

S —

il
2000

1560

VL

X1

S}

—IIII|IIII|IIII|IIIII—

[

e
¥y Bl + Ar — I [REGeWie] + T (520

et I R GeVie] + P LD GeYe] + T

But there are also
events like this
where we find lots
of proto-verticies

Don't want to
throw away this
information

— Some of this is
a function of what
clustering
algorithm you
chose

—There is
information in this
that tells we likely
have a shower In
this event

LT

1500

{1

EILY]

i
LT

1500

{1

i)

Again, taking everything can be bad...

IIII|IIII|IIII|IIII|——IIII|IIII|IIIIIr'IIII|—

|IIII|IIIII——IIIIlIIII|IIII|IIII|—

-«
-«

—
~

&0 (
Wy, (196 GeVicl + AT = [122 GeVie) + T (011 GeViel + P 103 GeVi) + T (25 Gl + (20 GeViel + (06 Gevicl 4

EndPoint2d Strength

TwoD Strength Plane 0

=)
o
w
=3

QUK

L1ET]

Tl

Gl

EILT

ALK}

| 14

Myl

{E1H

L1ET]

Gl

III|II | | III|I II|I |1 | I'III|IIII|IIII|IIII|IIII|IIII|IIII|IIII|

o

] |
Vy, 33 GeViel+ A =5 JU D4 GeViel + T (02 GeVie] + 1 0.3 GeVie)+ T 03 Gevite + 105 GeVie) + 13 GeVie] +

But can also be good...

Nore Perxformance: Plots

TwoD Strength Plane 0

fTwoDStrengthPlaned | |
Entries 4082 | 4
Mean 0.7049
RMS 1.462

0 5 10

N ——

Reco Wire in CM - True Wire in CM Plane 0

In lieu of modifying RecoBase/Vertex, what if

| only plot the 2d results for EndPoint2d
verticies (which all must correspond to a 3d
vertex) above a certain strength

(say, >=1, 2, 3)

Might be ok if | was going for purity...but not very good for efficiency

Reco Wire in CM - True Wire in CM Plane 0

10

1
[4.]
=]

=40

=30 =20 -10 0 10

20

30

30
fRecoCheck2dWirainCmPianad
Entries 792
Mean 5.659
RMS 12.38

40

Reco Time in CM - True Time in CM Plane 0

50

)
%_m\‘

fRecoCheck2aTimeinCmPlaned

Entries
Mean
RMS

792
0.5147
3.162

o \IH‘

Reco Wire in CM - True Wire in CM Plane 0

-50

RecoCheck2dWirainCmPlaned
T T T =5

Mean 5.216

RMS 1271

40 .30 -20 -10 0 0 20 30 40 50
Reco Time in CM - True Time in CM Plane 0
\\\\\\\ ned)
SRR I ‘ T ‘ ‘ ‘ " TEntries 546
Mean 0.8097
RMS 3.222

i
[} Hl\l

-40

(5] Hl\l
o

-30 -20 -10 0 10

fRecoCheck2dWirelnCmPlanel
C Entries 154
B Mean 1.527
RMS 8.121
10—
1
L |.H”M”|Hl
-50 10 20 30 40 50
Reco Time in CM - True Time in CM Plane 0
:‘H‘...“.Hw....'.u._...|H.‘_...|..'Em’ﬁes 54
C Mean 0.637
r RMS 234
10— —
1= —
SRR [i T T
50 40 -30 20 -10 0 10 20 30 40 50

Conclusions

* FeatureVertexFinder is in LArSoft right now along with
FeatureVertexFinderAna (used to produce all the plots you see in this
talk)

- You should check it out and give it a whirl
- Let me know problems and improvements you think are needed (there are lots...)

* Planned improvements / studies

— Producing plots in MicroBooNE

« Lower energy neutrino beam might have things look better
 Utilizing 3 plane geometry to hopefully find the primary vertex more reliably

- Study the difference given various clustering algorithms
» HoughLines, FuzzyCluster, dBCluster, etc...

- Work on tuning merging / matching parameters
» Might have to depend on the topology of the event...

- Want to incorporate proximity to hits as a way of increasing the vertex strength
* Need to be smart about this so as not to miss neutral current events

- Open to collaboration with others on the code / suggestions to making our

reconstruction work more dynamically

 Formal request to change RecoBase/Vertex members

Jonathan Asaadi Syracuse University,

Back-up Slides

Eeature Vertex Einder

2= SIope

BELOW IS THE CODE FOR CALCULATING INTERCEPTS

I
/1 ### Now we try to find a 2-d vertex in the plane we are currently looking in ###

for (unsigned int n = nClustersFound; n > 0; n--)

I/l ### Looping over the clusters starting from the ###
/1 ### first cluster and checking against the nCluster ###
I
for (unsigned int m = 0; m < n; m++)

/1 ### Checking to make sure clusters are in the same view ###

if(Clu_Plane[n] == Clu_Plane[m])

/I --- Skip the vertex if the lines slope don't intercept ---
if(Clu_Slope[m] - Clu_Slope[n] == 0){break;}
I

I X intersection = (yInt2 - yInt1) / (slope1 - slope2)
float intersection_X = (Clu_Yintercept[n] - Clu_Yintercept[m]) / (Clu_Slope[m] - Clu_Slope[n]);

I Y intersection = (slope1 * Xint) + yInt
float intersection_Y = (Clu_Slope[m] * intersection_X) + Clu_Yintercept[m];
/1 ### Filling the vector of Vertex Wire, Time, and Plane ###

I
/I --- Skip this vertex if the X and Y intersection is outside the detector ---
/I --- using geom->Nwires(plane,tpc,cyrostat) & detprop->NumberTimeSamples() ---
"

if(intersection_X > 1 && intersection_Y > 0 &&
(intersection_X < geom->Nwires(Clu_Plane[n],0,0) || intersection_X < geom->Nwires(Clu_Plane[m],tpc,cstat)
intersection_Y < detprop->NumberTimeSamples())

vtx_wire.push_back(intersection_X);
vtx_time.push_back(intersection_Y);
vtx_plane.push_back(Clu_Plane[m]);
n2dVertexCandidates++;

Y//<---End saving a "good 2d vertex" candidate

I
I

X intersection = (yInt2 - yInt1) / (slope1 - slope2

Y intersection = (slope1 * XInt) + yInt1
float intersection_Y2 = (Clu_Slope[m] * intersection_X) + Clu_Yintercept2[m];

/1 ### Filling the vector of Vertex Wire, Time, and Plane ###
"
/I --- Skip this vertex if the X and Y intersection is outside the detector ---

/I --- using geom->Nwires(plane,tpc,cyrostat) & detprop->NumberTimeSamples() ---
i -«

if(intersection_X2 > 1 && intersection_Y2 > 0 &&
(intersection_X2 < geom->Nwires(Clu_Plane[n],0,0) || intersection_X2 < geom->Nwires(Clu_Plane[m],tpc,cstat)) &&
intersection_Y2 < detprop->NumberTimeSamples())

vix_wire.push_back(intersection_X2);
vix_time.push_back(intersection_Y2);
vtx_plane.push_back(Clu_Plane[m]);
n2dVertexCandidates++;

}//<-—-End saving a "good 2d vertex" candidate

Y//<---End making sure we are in the same plane
Y//<---End m ++ loop
Y/<--- End n-- loop

) [
float intersection_X2 = (Clu_Yintercept2[n] - Clu_Yintercept2[m]) / (Clu_Slope[m] - Clu_Slope[n]);

I

II=== ===

FROM SLOPES

Checking to make sure
— the verticies are in the
same plane

Calculate the x (wire) and
y (time) of the intersection
point for the start point of
the cluster and the end
point of the cluster

then just make sure the
vertex makes sense
(inside the detector)

Eeature Vertex Einder

[remoVingiPuplicales

11 B
I ### Now we need to make sure that we remove duplicate verticies ###

/I ##H# just in case we have any in our list of n3dVertex i

1] B R R R R R

double x_3dVertex_dupRemoved[100000] = {0.}, y_3dVertex_dupRemoved[100000] = {0.}, z_3dVertex_dupRemoved[100000] = {0.};
int n3dVertex_dupRemoved = 0;

for(size_t dup = 0; dup < n3dVertex; dup ++)
float tempX_dup = x_3dVertex[dup];
float tempY_dup = y_3dVertex[dup];
float tempZ_dup = z_3dVertex[dup];

bool duplicate_found = false;

for(size_t check = dup+1; check < n3dVertex; check++)

|| R R R R R R R

/I ### | am going to call a duplicate vertex one that matches in x, y, and z ### N t .

11 #HiH within 0.1 cm for all 3 coordinates simultaneously H#H# O e .

I S R R A R . .

if(std::abs(x_3dVertex[check] - tempX_dup) < 0.01 && std::abs(y_3dVertex[check] - tempY_dup) < 0.01 && ng ht Nnow | COHSIdeI' a

T e \ duplicate vertex any two 3d
}/<---End checking to see if this is a duplicate vertex \VertICIGS that are Wlth I n O - 01
cminx,y, and z
Y/<---End check for loop Sl m U ItaneOUSIy

1] B R R
/] ### If we didn't find a duplicate then lets save this 3d vertex as ###

1] #H a real candidate for consideration H#itH

1| B R R R
if({duplicate_found)

{

x_3dVertex_dupRemoved[n3dVertex_dupRemoved] = tempX_dup;
y_3dVertex_dupRemoved[n3dVertex_dupRemoved] = tempY_dup;
z_3dVertex_dupRemoved[n3dVertex_dupRemoved] = tempZ_dup;

n3dVertex_dupRemoved++;

}
}/<---End dup for loop

Eeature Vertex Einder

Allalerertwellists

double TwoDvertexStrength = 0;
1/ #i### Case 1...only one 3d vertex found ###
if (n3dVertex_dupRemoved == 1)

{
1
1/ ##4# Looping over cryostats ###

for(size_t cstat = 0; cstat < geom->Ncryostats(); ++cstat)
{
1
1/ ### Looping over TPC's ###
1

for(size_t tpc = 0; tpc < geom->Cryostat(cstat).NTPC(); ++tpc)

11 ##H# Loop over the wire planes ###
1

for (size_t i = 0; i < geom->Cryostat(cstat). TPC(tpc).Nplanes(); ++i)

{
double xyz[3] = {x_3dVertex_dupRemoved[0], y_3dVertex_dupRemoved[0], z_3dVertex_dupRemoved[0]};
i

11 #1## Give the current 3d vertex found a strength of 1 ###
11 ##t# We will add +1 to it for each 3d feature that is ###

11 #iHt near by itin x, y, z space H#HHt

1
TwoDvertexStrength = 1;

11 ### Does this point correspond to a 3d-Feature Point? ###

1] #t# Loop over all the feature points H#i#

I

for (inta = 0; a < n3dFeatures; a++)
1 ##4# If you find a feature point within 3 cm of the vertex ###
1] #t# add a point to the vertex strength ittt

1

if (std::abs(xyz[0] - x_feature[a]) < 3 &&
std::abs(xyz[1] - y_feature[a]) < 3 &&
std::abs(xyz[2] - z_feature[a]) < 3)

This is the code | use when
after searching for for cluster
vertex candidates | have
only found == 1 3d vertex

By default this only has
———— strength = 1, but if it
matches within 3cm of a
corner vertex it gets +1 to

{ -
TwoDvertexStrength++;
}
}Y//<---End a for loop
double EndPoint2d_TimeTick = detprop->ConvertXToTicks(xyz[0],i, tpc, cstat);

int EndPoint2d_Wire = geom->NearestWire(xyz , i, tpc, cstat);

int EndPoint2d_Channel = geom->NearestChannel(xyz, i, tpc, cstat);

the strength

| simply take this vertex,

geo::View_t View = geom->View(EndPoint2d_Channel);
geo::WirelD wirelD(cstat,tpc,i,EndPoint2d_Wire);

11 ##H# Saving the 2d Vertex found ###

recob::EndPoint2D vertex(EndPoint2d_TimeTick , //<---TimeTick

wirelD , //<---geo::WirelD

TwoDvertexStrength , //<---Vitx strength (JA: ?)

epcol->size() , /1<---Vtx ID (JA: ?)

View , /1<---Vitx View

1) //<---Total Charge (JA: Need to figure this one?)

epcol->push_back(vertex);
}//<---End loop over Planes
}//<---End loop over tpc's
}//<---End loop over cryostats

1/ ### Saving the 3d vertex ###

1
double xyz2[3] = {x_3dVertex_dupRemoved[0], y_3dVertex_dupRemoved|[0], z_3dVertex_dupRemoved[0]};
recob::Vertex the3Dvertex(xyz2, vcol->size());

veol->push_back(the3Dvertex);

}/I<---End Case 1, only one 3d Vertex found

project down into 2-d and
record the point

Eeature Vertex Einder

Allalerertwellists

if (n3dVertex_dupRemoved > 1)

TwoDvertexStrength = 1;

/Istd::cout<<" ### In case 2 ###"<<std::endl;
1] HEHHHHEHH R
I/l ### Setting a limit to the number of merges ###

/1 ### to be 3 times the number of 3d verticies found ###
1] HEHHHHHHR T
int LimitMerge = 3 * n3dVertex_dupRemoved;

/I ### Trying to merge nearby verticies found ###

for(int merg{e1 = 0; merge1 < n3dVertex_dupRemoved; merge1++) Looping over the Iist Of CI uster
for(int merge2 = n3dVertex ; merge2 > merge1; merge2--) . .
g) | verticies to look for things to merge
ouble temp1_x = x_3dVertex[merge1];
double temp1_y =y_3dVertex[merge1]; —
double temp1_z = z_3dVertex[merge1];

double temp2_x = x_3dVertex[merge2];
double temp2_y = y_3dVertex[merge2];
double temp2_z = z_3dVertex[merge2];

if(temp1_x == 0 || temp1_y == 0|| temp1_z ==

Il . . ot .
fmpx == O ey == O tomp22 ==) contne) //Merglng if they are within 1.5 cm in

/I ### Merge the verticies if they are within 1.5 cm of each other ###

if ((std::abs(temp1_x -temp2_x) < 1.0 && temp1_x != 0 && temp2_x !=0) && X’ y’ and Z
(std::abs(temp1_y - temp2_y) < 1.0 && temp1_y != 0 && temp2_y !=0) &&
(std::abs(temp1_z - temp2_z) < 1.0 && temp1_z != 0 && temp2_z !=0) &&
nMerges < LimitMerge)

Zeroing the vertex you've just
~“merged (these are removed from the
list at a step not shown here)

/Istd::cout<<" Yup, | am going to merge these! "<<std::endl;

/Istd::cout<<" I've now performed a merge "<<nMerges<<" times"<<std::endl;
/Istd::cout<<"Merging"<<std::endl;
/Istd::cout<<"n3dVertex = "<<n3dVertex<<std::endl;
nMerges++;

/| ### Zero the vertex that | am merging
x_3dVertex[merge2] = 0.0;
y_3dVertex[merge2] = 0.0;
z_3dVertex[merge2] = 0.0;

n3dVertex_dupRemoved++; / D U m b (X+y)/2 m e rg e
/1 ### Add the merged vertex to the end of the vector ### /
x_3dVertex[n3dVertex_dupRemoved] = (temp1_x + temp2_x)/2;

_3dVertex[n3dVertex_dupRemoved] = (temp1_y + temp2_y)/2;
z_3dVertex[n3dVertex_dupRemoved] = (temp1_z + temp2_z)/2;

1] B
/I ### If we merged the verticies then increase its relative strength ###
1] BHHHHHEHHHHHH
TwoDvertexStrength++;

}/<---End merging verticies
}//<---End merge2 loop
}/<---End merge1 loop

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

