
ConfGen Analysis

 - 1 -

ConfGen Analysis: Managing Parameters, Provenance,
and Secondary Products

Jim Kowalkowski, Marc Paterno, Luciano Piccoli, Jim Simone

1 Introduction
This document describes the process of running ConfGen and recording a de-
scription of its results. Included are input parameters, output product description
and provenance tracking, detailed processing history, and direct storage of sec-
ondary output products.

1.1 Definitions
• ConfGen: any of the various programs used to create vacuum gauge configu-

rations.
• Parameter: a named value necessary to run a program (name-value pair).
• Parameter set: a collection of parameters. A parameter value can be a pa-

rameter set.
• Input parameters: the set of parameters necessary to run ConfGen.
• Output product: the main thing produced by ConfGen. In this case it is the

configuration file plus its information file.
• Provenance: information about what products a thing is derived from and

what algorithm and parameters were used in its construction. Everything that
contributes and is relevant to the creation of a product is included here.

• Processing history: a record of resources used in the running of ConfGen.
This includes failure data and workflow state information.

• Secondary product: anything that is produced as a result of creating a con-
figuration file or in the immediate analysis (summary) of a newly created
product. Examples are plaquette numbers, output U0, and checksums.

2 Parameter Set Notation
We will use a simple language to communicate parameters and parameters sets
in this document. A parameter will be specified as name = value. The name must
begin with a letter. The value can be any number (decimal or integer), string
(quoted or unquoted), array of name-value pairs, or a contained parameter set.

pair: name = value
name: (alpha)(alphanumeric)*
value: number | string | array | parameter_set
number: decimal | integer
string: quoted | unquoted
array: [value, value, …]
parameter_set: { pair pair pair … }

 - 2 -

We will assume that a unique numerical hash code can be calculated for any pa-
rameter set, and that hash code that be used to refer to the already-existing
parameter set in any other parameter set.

3 Parameterized Entities
All the entities of interest to ConfGen and their parameters will be introduced and
discussed here.

3.1 Ensemble
An ensemble is a collection of configuration files with the same physics. An en-
semble is defined (and described) by the set of parameters contained in this
example. Of course the parameter values are just an example of a particular en-
semble definition.
 Lattice = [20, 20, 20, 64]
 action = {
 name = “asqtad”
 beta = 6.76
 flavors = {
 ml = [2, 0.01]
 mh = [1, 0.05] # order in array is preserved
 }
 }
 initial_u0 = 0.85
 name_generation_rule = … unspecified as of this writing …

The name and values specified in this set of parameters define a unique ensem-
ble. Any value change will be a different ensemble.
We have identified three states that an ensemble can be in:

• Defined (no contained data)
• Tuning (no assigned u0)
• Production (u0 chosen)
We also identified a set of handling rules:

• A change in u0 after the production state is achieved is a different ensemble
• A change in any ensemble parameter is a different ensemble
• Parameters names within actions are dependent on the action type
The ensemble name is a human readable, unique key, allowing members to be
retrieved from mass storage.

3.2 Algorithm
Parameters of this kind control the execution of the physics algorithm. There are
two flavors of parameter: the ones that cause the generation of a new series and
ones that do not. A series is a collection of configurations that are part of the
same ensemble and share the same quality of physics (JBK – is this a good

ConfGen Analysis

 - 3 -

way to put this?). Series are better defined further in this document. Here is an
example demonstrating some of the algorithm parameters and their values.
 Series_related = {

Application = “milc/7.6.0.1/ks_imp_rhmc/su3_omelyan_rhmc”
 nPseudoFermions = 4
 rationalExpansion = <reference_to_rational_expansion_goes_here>
 …
 }
 Algorithm_related = {
 nTrajectories = 6
 nTrajectoriesBetweenMeasurements = 1
 nTimeStepsPerTrajectory = 24
 …
 }

The parameters that go in each bucket (Series_related or Algorithm_related) is
completely arbitrary.
We image that the values for the rationalExpansion parameter will be previously
calculated and stored, so all that it needed here is a reference to that set of val-
ues (recall that a parameter set can always be referenced by its hash code). The
rational expansion values could have been supplied inline, in which case the
hash code would have been calculated and substituted in automatically.
Algorithm application naming can in done in a better way than in the above ex-
ample. The individual components can be separately named parameters, such
as “product=milc version=7.6.0.1 action=ks_imp integrator=rhmc type=omelyan
family=su3”.

3.3 Configuration
Here is an example parameter set file used supply ConfGen with all the neces-
sary values to generate one configuration file. Any parameter that has as a
reference as a value could have also been expressed as an inline, embedded
parameter set.
 Ensemble = <reference_to_existing_ensemble>
 Parent = <see_text_for_value_values>
 Seed = <value supplied by user or default algorithm>
 U0 = <see_text_for_valid_values>
 algoParameters = <reference_to_existing_parameters>
 rationals = <reference_to_existing_rationals>
 OutputFilenameGenerationRule = … format to be determined …

The value of u0 can be any of the following:

• Previous: take the u0 that is the product of the parent, this is a tuning run, we
are extending the ensemble.

• Ensemble: this is a production run, use the ensemble u0, we are extending
the ensemble.

• Identity: this is a cold start for a new ensemble, use the identity matrix.
• Random: this is the hot start condition for a new ensemble, use random val-

ues in the matrix.

 - 4 -

• Parent: this is a warm start for a new ensemble, use the matrix produced by
the parent (parent section required).

We have heard about three ways to obtain seed values: (1) directly supplied in a
parameter set file, (2) select the next value from a collection of pre-generated
seeds, and (3) add one to the seed used by the parent.
The value of the parent parameter can be a reference to parent configuration pa-
rameter set or a directive that indicates what series within an ensemble will be
extended. In the latter case, we can look up the last configuration generated to
find the parent.

4 Series Management
Configurations generated for an ensemble are assigned to a series. A series is a
chain of related configuration files within one ensemble. A series always comes
from another series in the ensemble or is the initial creation from the ensemble
definition. We found two types of series: Generation Series and Analysis Series.
Forking will usually cause a new generation series to start.

4.1 Forking
From the configuration generation perspective, this is the act of starting a collec-
tion of related configuration files. They are related because they are still close
enough to be part of the same ensemble, but differ in a notable way. The series
or ‘stream’ with the change is the child, which is assigned a new series number
(or letter). The parent series continues on as before. The forked series is always
linked to the parent configuration where the fork occurred (this is permanent
provenance information). The newly forked child series grows independently and
perhaps concurrently of the parent series.

4.2 Generation Series
The series membership of a configuration file is determined strictly by parameter
settings within the algorithm section when ConfGen is run. Same parameter set-
tings mean that the new configuration file is added to the current series (its
parent series). Different parameters settings mean forking and the creation of a
new series. The generation series of a configuration is fixed when the configura-
tion is born. The series is an attribute of the configuration’s metadata; what will
be shown later is that there is no need for an explicit container structure for this
series type in the object model.
Q: Could the series identifier be defined as the ID (or a composition of IDs) from
the parameter sets used to generate the series? If the same configuration pa-
rameters are used, with a different lattice size, should the series identifier remain
the same? Yes

ConfGen Analysis

 - 5 -

4.3 Analysis Series
A collection of configuration files built after their generation. It is based on proper-
ties of the data and how the collection of configuration files will be used during
analysis. The type of series can also be referred to as a view of a particular part
of an ensemble. Configuration files can be members of many series. An analysis
series is always a subset of the generation series from which it is built. One of
these series is always linked (as a child) to a parent series unless it is the initial
view of the ensemble.
Changes in any parent series must be reflected in some way in its children se-
ries. Changes to a series imply a new analysis series and not edits to existing
series (since any created series is fixed for life). This constraint exists because
users of the original series must always know what the series looked like when
they ran there job. Parent changes also imply child changes (discussed in later
sections of this document). One way to express these edits to by maintaining a
version number for each analysis series.
Since analysis jobs that use configuration within series act on new data incre-
mentally, analysis series do not grow. A new analysis series is born and linked to
the parent when new data arrives and must be used. This procedure fits in well
with forking. (JBK – is this last paragraph true?)

4.4 Notes from Discussions
A series is defined by a set of parameters/algorithms used to generate every
configuration that is part of the series. It identifies each of its contained configura-
tions as ‘tuning’ or ‘production’.
Notion of “best”: child stream should be affected by new “best” parent streams. If
a parent changes, newly attached child views should be generated and marked
as “best”.

5 Dataflow
A configuration generation process usually starts from a set of parameters and
initial conditions (including an initial u0 value). During the first phase (tuning) at
each step a new configuration file and u0 are generated. These are used as input
for generating the next configuration and u0. This process repeats until a criterion
(e.g. stable u0) is met. At that point the ensemble state is changed from tuning to
production.
In figure 1 the tuning phase generates n configurations and u0 values. The last
generated u0 is used for subsequent production phases. The figure shows five
production scenarios:

• Extending the same configuration generation, using the same parameters
(series a);

• Changing the algorithm that generates the configuration (series b);
• Changing parameters for the algorithm (series c);

• Running same algorithm and parameters on a new cluster (series d); and
• Running a test branch (series t)
The identifier under the generated configuration file indicates the step and the
series it belongs to (e.g. 3c).

(n+3)a (n+1)a

u0initial

u01

u01

u02

…

u0n

u0 Same configuration

Algorithm changes

Algorithm parameter changes

New cluster running

Test branch

u0n-1

u0n

u0n-2

u0n-1

s1

s2 s2’

s3 s3’

s1
s1’

1a

1b

1c

2a (n-1)a (n)a (n+2)a (n+4)a (n+5)a (n+6)a

2b 3b 4b

2c 3c 4c 5c

1d 2d 3d

1t 2t 3t 4t 5t

Algorithm Parameters
ConfGen Participant
Generated Configuration
Series <number><letter>
Analysis Series

2c

s2

Figure 1 – Data Flow example containing an initial tuning phase and multiple
production branches.
The configuration files can be organized in analysis series, which are a view of
generated configurations. The analysis series are identified by s1,2,3 and s1,2,3’ in
figure 1. Analysis series can be reduced or extended (s1’ extends s1). Changes in
analysis series must be propagated to dependent series (Figure 2).

s1

s2

s3

s1'

s2'

s3'

(a) (b)

Figure 2 – Dependency of analysis series defined in figure1. (a) series first de-
fined. (b) change is series s1 generates new series s2 and s3.

5.1 Discussion Items
Does the change in algorithm in series ‘b’ (above) mean tuning can be done once
again? I think the answer is no for u0. For trials with different “algorithm_related”
parameters might be needed to determine correct settings. This is special case

 - 6 -

ConfGen Analysis

 - 7 -

tuning; analysis series would (or could) mast these perhaps unwanted configura-
tion files.

6 Object Model
Here we find structures for the representation of product metadata, secondary
products, parameters, provenance, and process history. The storage of these
data fall into one of the three categories listed below.

6.1 Parameters
Parameters are used to represent name-value pairs of type string, array or refer-
ence:

• String: single element array; the index field is not used.
• Array: parameter is part of an array; its position is defined by the index field.
• Reference: the parameter is a collection of parameters and has a reference to

a ParameterSet.
A NamedParameterSet defines a name for a given ParameterSet. An en-
semble l612f21b6600m0290m0484 is an example of name. A
ParameterSet may have several names.

Figure 3 – Object model for parameter and parameter set and named parameter

sets.

6.2 Provenance
There are a fixed set of types describing how the main product was produced
and what it is related to. The main product is expected to be stored elsewhere (in
mass storage). The data stored here can be used to locate primary and secon-
dary products and can be used to tag them for tracking purposes.

-id
-file_name
-u0out
-step
-series
-ensemble_id
-config_id_parent : NamedParameterSet
-pset_id_gen : NamedParameterSet
-pset_id_run : NamedParameterSet

Config

*

-Parent0..1

1

-ensemble, run_parameters, algorithm_parameters

*

-id
-ensemble_id
-name
-parent_aseries_id

AnalysisSeries

-type : char = t,p
-config_id
-aseries_id

SeriesMember

1

*

1

*

1

-Parent1

-id
-name
-pset_id
-type

NamedParameterSet

Figure 4 – Object model for configuration generation provenance tracking

6.3 Secondary Products
There is one type here for each unique product type. The types are user defined
and an overall catalog e necessary to keep track of types and instances. The
secondary products are stored directly and may be linked to information from the
previous section.

Figure 5 – Object model for tracking secondary products – only u0 tracking is

shown here.
These are parameters abstracted away from the ConfGen provenance:

• u0: during the tuning phase every ConfGen config generates an u0. Every u0
has a link back to the config that generated it. An u0set gathers all u0 gener-
ated for a given ensemble. All u0’s are of type t (for tuning), except the last
one which is given type p (for production).

• seed: every config has its own seed value and it is generated according to the
selected algorithm (seed is still shown as attribute of config in the picture)

• series: the series value could be derived from the identifiers of parameter sets
used by the configuration (series is still shown as attribute of config in the pic-
ture)

 - 8 -

ConfGen Analysis

 - 9 -

6.4 Processing History
Stored here is information about processes (names and paths) and their state.
We will record where programs ran and on which node, and software versioning
information. Workflow tracking data and performance data may also be contained
here.
The ParticipantType contains the name of the algorithm (ensemble action
name). Participants represent actual binaries that implement the Partici-
pantType. For each Config a single Participant is used for generation.
Information about user id, execution time, exit status is kept in the Participan-
tUsage class.

6.5 Diagram
The actual storage of parameters and parameters will be not be shown in these
diagrams.

-id
-ensemble_id
-name
-parent_aseries_id

AnalysisSeries

1

-Parent

1

-id
-file_name
-u0out
-step
-series
-ensemble_id
-config_id_parent : NamedParameterSet
-pset_id_gen : NamedParameterSet
-pset_id_run : NamedParameterSet

Config

-type : char = t,p
-config_id
-aseries_id

SeriesMember

1*

*

-Parent

0..1

-id
-name
-pset_id
-type

NamedParameterSet

1

-ensemble, run_parameters, algorithm_parameters*

1

*

-id
-name
-value
-index
-type : ParameterType

Parameter

*

-reference0..1

-id
-config_id
-type : char = (t,p)
-value

u0values
1

-config_id

1

-id
-ensemble_id

u0set

1

-ensemble_id

1

1

*

-id
-hash_code

ParameterSet

-id
-param_id

ParameterSetParameters

*

*

1 *

*
-reference

0..1

-id
-binary
-platform
-version

Participan
-id
-algorithm_name

ParticipantType

1 *

-id
-location
-type

Cluster

1 1

Secondary Products SpaceProvenance Space

Processing History Space

-uses 1

*

1*

1
1

-config_id
-participant_id
-cluster_id
-node_count
-user
-start_time
-end_time
-exit_status
-env_params
-mpi_params
-shell_params
-exe_params

ParticipantInstance

Figure 6 – Full object model diagram

6.6 Important Element Descriptions

6.6.1 User Data
Any extra pieces of information necessary for use in analysis known only after
generation is complete and the metadata written and fixed e.g. classification of
the configuration file as ‘tuning’ or ‘production’.

6.6.2 Ensemble u0
Details of this object need to be worked out. Since the ensemble u0 is a product,
it is stored in the secondary products area. The presence of a value for an en-
semble could be used to indicate the production state of the ensemble.
 - 10 -

ConfGen Analysis

 - 11 -

7 Running a Job
There can be three ways to specify job parameters necessary to actually run
ConfGen:

• Directly supply all of them in a text file
• Supply bit of stuff that you know in a text file, and then present it to a service

to resolve all pointers and fill in addition values.
• Go to a web site (or other tool), and request a parameter set to do the work.

Here we can guide the user in constructing a full parameter set based on the
desired effect and spit out a complete parameter set to do the processing.

A workflow system would likely use a combination of the second and third to
automatically generate many configuration files as the execution of the workflow
progresses.

8 Isolated Clusters
Running on clusters that have no connection to Fermilab or a central repository
presents us with a problem. Here we declare to the system the desire to do a
given amount of work on an ensemble. The system locks the series being oper-
ated on, and prepares an extract in the form of a database that contains all the
information for running standalone (into sqlite for example). The new data can be
added back to the main repository from the extract database incrementally or at
the end of the job. The extract can be deleted when its data is added. This pro-
cedure also works for testing.

	1 Introduction
	1.1 Definitions

	2 Parameter Set Notation
	3 Parameterized Entities
	3.1 Ensemble
	3.2 Algorithm
	3.3 Configuration

	4 Series Management
	4.1 Forking
	4.2 Generation Series
	4.3 Analysis Series
	4.4 Notes from Discussions

	5 Dataflow
	5.1 Discussion Items

	6 Object Model
	6.1 Parameters
	6.2 Provenance
	6.3 Secondary Products
	6.4 Processing History
	6.5 Diagram
	6.6 Important Element Descriptions
	6.6.1 User Data
	6.6.2 Ensemble u0

	7 Running a Job
	8 Isolated Clusters

