
LQCD Workflow Mini-review
W. E. Brown, D. Holmgren, E. Neilsen, M. Paterno

March 16, 2009

1 Introduction

The major goal of the LQCD Workflow Project is to create a system for designing, maintaining,
and running LQCD workflows, and provide for the storage and use of their results. After complet-
ing an evaluation of available products, one has been selected and a prototype LQCD workflow
system has been developed.

The present report is the result of a requested assessment of this prototype system in order to
guide its future development. In particular, the review team was asked:

1. How well does the design and prototype implementation fit the requirements?
2. How well does the current system match the configuration generation analysis?
3. What improvements should be made to the code (including design and data model)?
4. What areas are in need of further study, specification, or review?

1.1 Attendees

The review began with presentations from the principals involved in the preliminary evaluation
and the subsequent design and implementation of the prototype system, aided by helpful com-
ments from additional observers. The reviewers acknowledge, with thanks, the participation of
the following presenters and observers:

• Abhishek Dubey (by phone)
• Jim Kowalkowski
• Paul Mackenzie
• Lucciano Piccoli (principal presenter)
• Jim Simone
• Amitoj Singh

1.2 Additional considerations

The following concerns had been singled out by the presenters/observers for special attention by
the reviewers:

• the abstractions and concepts
• how well the package expresses the LQCD configuration generation workflow (and others)

mailto: wb@fnal.gov, dholmgren@fnal.gov, neilsen@fnal.gov, paterno@fnal.gov

LQCD Workflow Mini-review 2

• interfacing with legacy applications - Providing wrappers to applications for different work-
flow engines

• parameter set management
• the design of the package as a whole

1.3 Plan of this report

In section 2, we present an overview corresponding to our understanding of the LQCD Workflow
Project. Section 3 comments on the Project’s requirements as a whole, while section 4 details the
reviewers’ major concerns.

In section 5, we assess the progress of the prototype implementation vis-à-vis the Project’s
identified requirements. Section 6 makes recommendations regarding the Project’s design, and
section 7 focuses on recommendations regarding coding. Section 8 finishes the report with a brief
conclusion.

1.4 Document conventions

Within this report, names of database tables and columns will be presented in this font, and code
snippets (including names of types and objects) will be presented like this. Other names will
be presented in italicized font. Finally, the reviewers’ specific recommendations are introduced
with the phrase “We recommend”

2 Project overview

The goal of the LQCD Workflow Project is to provide an automated system for the execution
of lattice QCD calculation campaigns. At present, the scientists doing these calculations rely on
scripts that have evolved over many years. These scripts have been implemented in shell, Perl,
and Python. They manage the tasks of submitting LQCD jobs to the batch systems of clusters
and other supercomputers, monitoring the jobs, staging data products in and out of storage areas
used by the jobs, logging progress, recording status, and various other bookkeeping tasks.

There are various types of campaigns, and there are sets of scripts unique to each type. The
reviewers were given two specific campaign types as examples. These were “configuration gen-
eration” (confgen) and “two-point analysis.”

Configuration generation campaigns generate ensembles of vacuum gauge configurations.
These campaigns are very straightforward, with a single binary executed repeatedly, using the
prior output data as input to the next iteration. A set of physics parameters describes a given
campaign, including such variables as lattice size, lattice spacing, quark masses, and couplings.
In the first phase of a campaign, called the tuning phase, a physics parameter (related to the av-
erage plaquette) is varied until consistent gauge configurations are generated. After the tuning
phase is declared finished by a scientist who analyzes the stream of configurations, the tuning pa-
rameter is fixed and the campaign enters the phase where the actual ensemble of configurations
is calculated and stored. As described to the reviewers, these campaigns can bifurcate into two

3 W. E. Brown, D. Holmgren, E. Neilsen, M. Paterno

or more streams. At the bifurcation, parameters such as the random number set are changed to
create a new calculation stream.

The second campaign example shown to the reviewers, in much less detail, uses an ensemble
of gauge configurations to generate quark propagators via one or more binaries, and then per-
forms calculations to determine correlations between these propagators. This style of campaign
has many opportunities for parallel execution of the user binaries, as each gauge configuration is
used independently to generate the various heavy and light quark propagators.

The reviewers were asked to concentrate on the as-yet unfinished implementation of a work-
flow system for the confgen campaigns.

The LQCD Workflow Project’s members have investigated a number of workflow systems for
suitability. These systems include Kepler, Askalon, Swift, and others that are documented in a re-
port. One of the conclusions of their investigation was that the existing systems are inadequate to
meet the requirements for an LQCD workflow system. A list of these requirements was provided
to the reviewers. The Project has made a design choice to wrap an existing workflow system
with front and back ends. The front and back ends will be responsible for parameter manage-
ment, recording of provenance information for data products, tracking progress of the workflow
campaigns, and organization and storage of secondary products.

The Project team has chosen Rails as the framework to implement the front and back ends.
Although its goal is that any of a number of existing workflow systems can be used as the “wrap-
pered” workflow engine, it has concentrated on Swift from the University of Chicago, and Open-
WFEru (also known as Ruote, so termed in the rest of this document), an open source project
developed using the Ruby language.

Ruote is a natural choice, as Rails is also implemented in Ruby. Rails provides a robust im-
plementation of the “Active Record” design pattern. This design pattern is used to interact with
relational databases. Relations (tables) are wrapped in classes, with attributes (columns) as data
members of these classes. Object instances correspond to individual rows of the tables. The LQCD
Workflow design uses classes in this pattern to represent individual physics parameters, sets of
parameters, participants (atomic data or state transformation actions, such as an LQCD binary,
or a simple shell script), data products, hardware descriptions (for example, cluster name and
information), run history, and other relations necessary for workflow bookkeeping.

The wrappered workflow engine (currently Ruote) is responsible for executing the partici-
pants. A participant might be as simple as a shell command, with immediate return, or as com-
plicated as the submission of a batch job or a mass storage access command, both of which would
require logic to check for return status at later times.

Users must use the language of the wrappered workflow engine to express the logic of their
LQCD workflows. A goal of the Project is to make these workflow specifications natural to the
scientists; this implies that the vocabulary must include LQCD domain specific elements. We note
that there are also many terms used that are specific to the domain of automated workflow, and
that such nomenclature is generally unfamiliar to most scientists. (The reviewers were provided
with a very useful document containing a glossary for the LQCD Workflow Project. This included
general, workflow domain, and scientific domain terms. The glossary is available on the review
web page.)

The configuration generation campaign example in this review was expressed in Ruote. How-
ever, the reviewers did not have the opportunity to look at this part of the confgen example, but

LQCD Workflow Mini-review 4

only at the front and back ends. The source tree provided to the reviewers also included a subdi-
rectory with Swift code, and the reviewers were told that the prototype includes wrappering Swift
as a workflow engine.

Two areas important to the successful execution of LQCD workflows, monitoring and fault
tolerance, were outside of the scope of this review.

The Project makes use of the following abstractions:

• Parameter space, with values provided by the scientific users, grouped into sets:
– physics parameters
– algorithmic parameters
– execution parameters

• Provenance space (i.e. history and dependencies of files, binaries, and other data products)
• Run history space (algorithm(s) used, cluster, used, nodes used, generated outputs, etc.)

LQCD workflows involve the following data file types:

• Vacuum gauge configurations, O(1Gbyte) each, ensembles O(1K) files each
• Intermediate analysis files: O(10Gbyte) each, approximately 3-5 per gauge configuration per

analysis
• Final files: O(10Kbyte) each, O(1K) files per analysis

The presenters noted that the management of these final files was a substantive issue, and that
it was hoped that the back end database would greatly help with organization and access to the
parameters in these files.

3 Requirements

The reviewers were provided with a two page summary of requirements, numbered 1 through 13,
that were from a summary section of a much longer document. Some of the requirements in this
summary are vague or insufficiently specified. The full document may have sufficiently detailed
requirement specifications, but this full document was not provided to the reviewers.

Now that a prototype is in place and lessons have been and are being learned, we feel that a
a rewrite of the requirements is necessary and we recommend this be done. The revised require-
ments should be more specific than the summary provided to the reviewers.

4 Major concerns

4.1 Testing

We found no evidence of systematic testing of the software, or even preparation for such. System-
atic tests, both fully automated and documented manual tests, have important roles to play, and
can do several things for a project. None of these can be done as well if the tests are developed or
designed late in the development of the software.

5 W. E. Brown, D. Holmgren, E. Neilsen, M. Paterno

Finding bugs The surface purpose of most tests is to determine whether the code performs as
intended. While we assume that informal testing has been done as the code was being de-
veloped, systematic formal testing has several advantages. If a continuously expanded and
maintained suite of automated tests is run regularly (perhaps daily), then errors introduced
by new changes can be caught immediately. Documentation of manual tests serves as a
reminder of what needs to be tested when more thorough testing is desired. If such test-
ing relies on the memory of the developer when the testing is done, useful tests that were
obviously important when the code was written may have been forgotten.

Specifying requirements One can think of a test of a feature of the code as a low level require-
ment on that code. Writing such tests is sometimes useful in helping developers thoroughly
think through what the code actually needs to do, and helps maintainers and reviewers
understand what the developers were trying to accomplish.

Demonstrating functionality A good test, whether it is fully automated or a documented man-
ual test, can demonstrate to a reader what the code tested is supposed to do, and how it is
intended to be used; a well written test is effectively an example.

Both Ruby and Rails have automated testing frameworks, and we recommend that the devel-
oper take advantage of these. In cases where an important feature is difficult to test using these
frameworks, we recommend at least a few sentences describing a manual test be included in a
test document.

When preparing for future review, we recommend that developers provide a short document
(perhaps just a page or two) pointing out which tests are the most informative or demonstrative
of functionality specified in the high level requirements document.

4.2 Checksum purpose and effectiveness

Many of the tables in the database store MD5 checksums. In many cases, the purpose of the MD5
checksum is unclear. In some cases, we speculate that the purpose is to serve as a key for the
table. If this is true, there are several places where other columns or combinations of columns
would serve as well, and the storage of the MD5 checksum is unnecessary.

In cases for which it would be useful as a key because there are no other columns or combi-
nations of columns that would serve, the problem of hash collisions must be addressed. In some
cases, the construction of the data to be hashed makes collisions very likely. For example, the
model ParameterSetParameter creates a hash of the catenation of the set id and the parame-
ter id. If the set id is 1 and the parameter id is 11, the data to be hashed will be 111. If the set id is
11 and the parameter id is 1, the data to be hashed will also be 111; these two rows will have the
same MD5 checksum.

Even when the data to be hashed is guaranteed to be unique, the MD5 checksums are not.
This will be much less common, but possible, and if the database is assuming the MD5 checksum
column is a unique key, the results are disastrous; such collisions must be prevented.

If the MD5 checksum serves another purpose, and is not required to be unique by the database,
then it may be (but is not necessarily) acceptable for there to be hash collisions. For example, the
database may store the MD5 checksum of a file so that copies of it may be checked for corruption.

LQCD Workflow Mini-review 6

4.3 Create a design document

To move beyond the prototype, we recommend that the developers create and maintain a formal
design document, with particular emphasis on the data model including motivations for each
feature. Further, we recommend that this document be reviewed upon its completion.

Documentation generated from the source code files themselves, using tools such as those
described at the end of section 7, can form the core of the low level elements of the design docu-
ment. When writing comments in the code, we recommend the developers always keep in mind
the documentation that will be derived from it.

We recommend that the design document also include a high level description of the architec-
ture. The high level design should provide a basic introduction to the main elements of the design,
and provide a context in which lower level design descriptions can be understood. After reading
the high level design, a software developer previously unfamiliar with this Project should be able
to navigate the low level design description to find the documentation for code that performs a
specific task or database elements that hold specific data of interest. The developer should be able
to figure out from the design document which requirements can be fulfilled by the current design,
and which requirements each major architectural feature supports.

For this application, a thorough description of the database schema is essential. We recom-
mend that the design document include not only an entity-relationship (ER) diagram but also,
for every column of every table in the database, a prose description of what data that column
is intended to contain and its purpose in the application. See section 7 for recommendations of
tools for the creation and maintenance of such documentation from source code and comments
contained therein.

4.4 Code consistency

The reviewed code base is not in a self-consistent state. We recommend that developers should
keep the code in a self-consistent state. Periodic systematic testing can be an invaluable tool for
reminding the developer of the different parts of the Project that must be updated for a major
design change. Consistency is important not only in the code itself, but also the nomenclature.
The same terms should be used for the same things consistently throughout both the code itself
(in the naming of variables, classes, etc.) and the documentation.

The Rails framework provides a fine-grained modularity that supports a development method
consisting of multiple (relatively) small steps. In section 7 we provide several coding recommen-
dations that we believe will help take advantage of this feature of Rails, and which in turn will
make keeping a consistent code base easier.

5 Progress towards Project requirements

This section lists by number and brief title each formal requirement for the LQCD Workflow
Project, and gives the status of each requirement in the prototype. For the description of each of
these requirements, see the summary document on the review web page (http://home.fnal.
gov/˜piccoli/lqcd/).

http://home.fnal.gov/~piccoli/lqcd/
http://home.fnal.gov/~piccoli/lqcd/

7 W. E. Brown, D. Holmgren, E. Neilsen, M. Paterno

We note that several of the requirements (1.7 Assignment of Resources, 1.8 Stage In Configu-
ration Files, 1.9 Fault Tolerance, 1.10 Manage Intermediate Files, 1.12 Campaign Execution Time,
1.13 Interact with Scheduler) are not addressed by the prototype. We recommend that the Project
consider whether such requirements are still relevant, and if not, descope the Project accordingly.

1.1 Execute campaigns While it is clear that the current implementation is intended to be able to
execute campaigns, it is unclear from either the code or any running example how this is to
be done. How does a user start the execution of a workflow?

1.2 Campaign specification The current implementation has a mechanism for specifying work-
flows, but it is currently at too low a level for use by many users; there is a critical need for a
higher level workflow specification mechanism. Such a mechanism could be implemented
in either text or graphic mode. In the absence of such a higher level specification capability,
there appear to be tools that could be of value to users for helping create Ruote workflows
graphically, and displaying the corresponding low level text specification.

See http://difference.openwfe.org:4567/?pdef=onerror_0.rb for an ex-
ample of the on-line tool in action.

There does not appear to be a way to organize a set of participants as a “named thing”
with a version and/or additional tags, so that a scientist could easily specify a set of partic-
ipants which are known to work together well.

1.3 Dispatch campaigns There appears to be some progress toward submitting batch campaigns,
but significant work remains to be done.

1.4 Monitor progress There appears to be some progress toward supporting the monitoring of
workflow progress, but significant work remains to be done. Is the Rails web application
supposed to spawn long jobs and allow monitoring of them, or does it just prepare jobs to be
spawned and monitored by some other application? The specification of this requirement
needs to be more detailed.

1.5 Access execution history The current design appears to allow this, but work remains to be
done. The specification of this requirement needs to be more detailed.

1.6 Handle multiple users The design appears to allow this without explicit support, but rather
depends on capabilities of the underlying workflow engine and scheduling tools (Ruote and
Rufus) that were not explored in this review.

The requirements for user management are underspecified, and little has been done to
address possible implied requirements. The architecture does not seem to restrict use by
multiple users - should an instance of a workflow be limited to a single user?

1.7 Assignment of resources This requirement does not appear to be addressed yet. Perhaps this
is handled by Rufus, but this is unclear.

From the data model, it is possible for a participant instance to spawn jobs on multiple
clusters. It would be sensible to limit participants to single execution entities.

1.8 Stage in configuration files This requirement does not appear to be addressed yet. Perhaps it
can be implemented through a standardized participant?

1.9 Fault tolerance This requirement has not been addressed. Concern about restarts of not only
participants but also the Rails web application is necessary at this stage. There are several
possible approaches. A participant can update the database either directly, through a web
application, directly, or using a “blackboard” that can be read by the web application later.
In the later case, downtime in the database and web application need not cause status from
running participants to be lost.

1.10 Manage intermediate files This requirement has not yet been addressed.

http://difference.openwfe.org:4567/?pdef=onerror_0.rb

LQCD Workflow Mini-review 8

1.11 Data provenance Significant progress has been made on tracking data provenance. We rec-
ommend that hash codes, such as MD5 checksum, of all files that are tracked be included in
the database.

Consider recording the provenance of the entries in the secondary products table. For
example, the system might record the path of the log file from which information was ex-
tracted and enter it into a row of the secondary products table.

1.12 Campaign execution time This requirement has not yet been addressed.
1.13 Interact with scheduler This requirement has not been addressed, and perhaps the require-

ment itself is overly general and needs to be rewritten.

6 Design recommendations

6.1 Database schema

There are several places where the schema is either inconsistent, or uses column names that are
confusing in light of Rails naming conventions. For example, the plaquette values table has con-
fig file id, but there is no table named config files (although there is a model ConfigFile). We
recommend the schema (and also the object model) be brought into a consistent state before any
additional functionality is added to the system.

We note that none of the database tables contains an index. We recommend reviewing all the
tables to determine what indices should be formed. If query logs for the production database are
available, we recommend reviewing them to help identify slow queries that would benefit from
the addition of indices. In addition, some of the tables seem in need of uniqueness guarantees,
which could be enforced by the database engine through the use of unique indices.

Most of the database schema is not specific to the confgen application, nor even to LQCD;
it is applicable to any workflow. We recommend considering the factorization of the design to
identify clearly the part that is generic and the part that is specific to the confgen application (e.g.,
the ConfigFile class).

6.2 Object model

6.2.1 ActiveRecord issues

In several places, object model features that could be provided by ActiveRecord seem to be imple-
mented “by hand.” For example, the model ParameterSetParameter and the associated table
parameter set parameters seem to provide a many-to-many relationship between parameter sets
and parameters. This model contains a hash code that seems not to provide any benefit. Except
for the existence of this hash code, it seems that this model could be eliminated, the table re-
placed with a table named parameter sets parameters containing columns parameter set id and
parameter id, and the has and belongs to many relation used in the models to provide the as-
sociation. The model WorkflowInstanceParticipant may be another example of a model
that could be eliminated in favor of use of has and belongs to many

9 W. E. Brown, D. Holmgren, E. Neilsen, M. Paterno

The model ConfigParameterSet is defined as inheriting from ParameterSet, and there
is no corresponding table config parameter sets. The result is that find xxx functions, when used
on class ConfigParameterSet, will return objects that are not ConfigParameterSets. We
recommend looking into use of the Single Table Inheritance pattern, as described in Agile Web
Development with Rails.

6.2.2 Model classes

We recommend that the Parameter class be given a method that returns the contained value as
the correct type, rather than the string representation.

Several of the model classes (e.g., ParameterSet, PlaquetteSet) contain hash codes that
hash the value of one or two columns of the database. We see no value in such a hash, and we
recommend reviewing the hash codes in all the models to verify their utility.

We don’t understand the difference between ProductProperty and Parameter; the first
seems to provide a strict subset of the functionality of the second. We recommend clarification of
the purpose for each of these classes, and that consideration be given to collapsing the two into
one class.

In the existing code, a product may be associated with the ParameterSet used in its cre-
ation (through the ParameterSet’s id). But it seems to us that it should be the participant that
should be associated with the ParameterSet, and the product associated with the participant
that created it. We recommend considering this modification.

6.3 Views

Some of the views (perhaps those that were generated using the code generation scripts in Rails)
allow editing and destruction of records in the database. Since modifying or deleting any row
which is referenced from elsewhere in the database could destroy the provenance tracking ability
of the application, we recommend removing all such views.

7 Coding recommendations

We recommend the use of Rails features that allow views to be more automatically adaptive to
changes in models. For example, many views are written in a form that explicitly makes use of
the names of the data members of the associated model, rather than using the features of Ac-
tiveRecord that allow one to discover the data members dynamically (e.g., the column names
class method of every model class).

Rails is based on the Model-View-Controller design pattern; the separation of code into dif-
ferent realms of responsibility is a significant contributor to the ease of maintenance of a Rails
application. Mixing responsibilities results in a loss of maintainability. In some of the views (e.g.,
views/parameters/index.html.erb), database queries are mixed in with the view code. We rec-
ommend that such queries be moved to the associated controller.

LQCD Workflow Mini-review 10

Some of the code uses hard-coded absolute paths, and is thus not portable. We recommend
avoidance of absolute paths, and instead we recommend the use of Ruby and Rails idioms which
rely on the standard Rails directory structure to work with paths relative to the local directory.

We recommend following the idiomatic Ruby naming scheme for predicate functions: e.g.,
use parameterSet? rather than isParameterSet.

We note that the idiomatic Rails naming scheme for model classes is followed almost every-
where. We recommend that PBSProvider be brought into conformance, and renamed to Pbs-
Provider, so that the automatic Rails table name association does not have trouble.

In some places classes are externally manipulated by their clients, rather than being given
responsibility for performing work. For example, the Parameter object in the addParameter
method of ParameterSet is told to calculate its hash. We recommend instead that Parameter
objects be able to generate their hash as necessary, so that client code can merely ask for the
hash, rather than having to first command its calculation and then request the value. In this
specific method, it may be that the entire functionality implemented “externally” might instead
be replaced by already-existing behavior in the class being manipulated: much of the code in this
method could be replaced by just calling parameter.save (or perhaps parameter.save!).

ActiveRecord provides many utility functions for performing database queries, the use of
which tends to simplify and clarify code; the current code takes insufficient advantage of these
utility functions. For example, the method addParameter in ParameterSet uses

p = Parameter.find(:first,
:conditions => "hash_code=’#{parameter.hash_code}’")

We recommend instead:

candidates = Parameter.find_all_by_hash_code(parameter.hash_code)

Note that we have also modified the code to deal with the possibility of non-uniqueness in the
MD5 checksum, a problem discussed earlier in this document. As a second note on this same
method, we believe that use of the find or create by xxx family of functions might dramati-
cally simplify the code.

Ruby provides a documentation system (RDoc) that can create HTML documentation pages
from comments in the source code, and that also allows for non-source based documentation to be
included. We recommend that RDoc comments be included describing the purpose of each class,
and of each public method. We recommend also the consideration of two additional Rails-related
tools: the plug-in annotate models (which queries the database schema to determine the database
columns, and annotates each model class to reflect its associated table) and railroad (which can
create entity-relationship diagrams showing the database schema). We note that the code must

11 W. E. Brown, D. Holmgren, E. Neilsen, M. Paterno

be in a self-consistent state for railroad to work, and thus we recommend that this work be done
before further development is done.

8 Conclusion

This is an excellent effort at a prototype. Significant work remains to be done, using the experience
gained from the prototype to generate a more detailed set of requirements and a design document
for a production implementation.

	1 Introduction
	2 Project overview
	3 Requirements
	4 Major concerns
	5 Progress towards Project requirements
	6 Design recommendations
	7 Coding recommendations
	8 Conclusion

